Groundwater Storage Change Estimation Using Combination of Hydrogeophysical and Groundwater Table Fluctuation Methods in Hard Rock Aquifers
This study aims to estimate the groundwater storage change of hard rock aquifers in the face of change. For this, the approach developed consisted initially in the implementation of 5 Magnetic Resonance Soundings (MRS) around the observation wells realized and monitored from 2014 to 2015 in the Sano...
Saved in:
Published in | Resources (Basel) Vol. 7; no. 1; p. 5 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study aims to estimate the groundwater storage change of hard rock aquifers in the face of change. For this, the approach developed consisted initially in the implementation of 5 Magnetic Resonance Soundings (MRS) around the observation wells realized and monitored from 2014 to 2015 in the Sanon experimental site. In a second step, we determined the storage change using the MRS data and the water table fluctuation method. The MRS data show that the water content varies spatially from 4.5 to 1.3%. The maximum value is recorded at the central valley where a piezometric dome is observed. The specific yield varies from 2.4% in the central valley to 1.3% at the outlet. The renewed water resource is estimated at 116 mm in the central valley and 32 mm at the outlet, which corresponds respectively to 13 and 3% of the annual rainfall. The renewed water resource is consistent with the annual recharge. Thus, the combination of the MRS geophysical approach and water table fluctuation method is an efficient, fast and cheaper (compared with long-term pumping test) tool for the estimation of groundwater storage changes. |
---|---|
ISSN: | 2079-9276 2079-9276 |
DOI: | 10.3390/resources7010005 |