Ferromagnetic interactions in hosted bipartite materials—generalized-double-exchange and generalized-superexchange interactions

Defect-induced magnetism in dilute magnetic semiconductors challenges our understanding of magnetism in solids. Theories based on conventional superexchange or double-exchange interactions cannot explain long range magnetic order at concentrations below the percolation threshold in these materials....

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Condensed matter Vol. 23; no. 8; pp. 086004 - 8
Main Authors Andriotis, Antonis N, Lisenkov, Sergey, Menon, Madhu
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 02.03.2011
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Defect-induced magnetism in dilute magnetic semiconductors challenges our understanding of magnetism in solids. Theories based on conventional superexchange or double-exchange interactions cannot explain long range magnetic order at concentrations below the percolation threshold in these materials. On the other hand, the codoping-induced magnetism, which can explain magnetic interactions below the percolation threshold, has eluded explanation. In this work we propose that defect-induced magnetism in codoped non-magnetic materials can be viewed within a molecular generalization of the atomic double-exchange and superexchange interactions applied to an arbitrary bipartite lattice hosted by (or embedded in) defect-free non-magnetic materials. In this view, the crucial factor for the development of magnetism appears to be the defect complementarity of the codopants. We demonstrate this by taking ZnO and GaN (the most widely studied doped oxide and nitride magnetic semiconductors, respectively) as host materials and perform theoretical calculations using ab initio methods after codoping them with transition metal impurities for a variety of configurations. Our results indicate that the magnetic coupling among the induced and/or doped magnetic moments takes the form of an interaction among spin-polarized molecular units which is facilitated by the formation of the hosted bipartite codopant structures. The universality of the proposed mechanism is further supported by earlier results referring to the rhombohedral C(60)-based polymers.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/23/8/086004