Hydrodynamics of a free-flowing leukocyte toward the endothelial wall
Leukocyte recruitment is an essential stage of the inflammatory response and although the molecular mechanisms of this process are relatively well known, the influence of the hydrodynamic effects that govern the inflammatory response are still under study. In this paper we made use of the images and...
Saved in:
Published in | Microvascular research Vol. 112; pp. 7 - 13 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Leukocyte recruitment is an essential stage of the inflammatory response and although the molecular mechanisms of this process are relatively well known, the influence of the hydrodynamic effects that govern the inflammatory response are still under study. In this paper we made use of the images and experimental parameters obtained by intravital microscopy in an in vivo animal model of inflammation to track the leukocytes trajectories and measure their velocities and diameters.
Using a recent validated mathematical model describing the coupled deformation-flow of an individual leukocyte in a microchannel, numerical simulations of an individual and of two leukocytes under flow were performed. The results showed that velocity plays an important role in the motion, deformation and attraction of the cells during an inflammatory response. In fact, for higher inlet velocities the cell movement along the endothelial wall is accelerated and the attraction forces break faster. These results highlight the role of the mechanical properties of the blood, namely the ones influenced by the velocity field, in the case of inflammation.
•Numerical simulation obtained with results from an in vivo animal model•Hemodynamic conditions play an important role in leukocyte recruitment.•The hemodynamic parameters involved in an inflammatory response can be modulated. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0026-2862 1095-9319 |
DOI: | 10.1016/j.mvr.2017.02.003 |