Resonant Chains of Exoplanets: Libration Centers for Three-body Angles
Abstract Resonant planetary systems contain at least one planet pair with orbital periods librating at a near-integer ratio (2/1, 3/2, 4/3, etc.) and are a natural outcome of standard planetary formation theories. Systems with multiple adjacent resonant pairs are known as resonant chains and can exh...
Saved in:
Published in | The Astronomical journal Vol. 161; no. 6; pp. 290 - 298 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Madison
The American Astronomical Society
01.06.2021
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
Resonant planetary systems contain at least one planet pair with orbital periods librating at a near-integer ratio (2/1, 3/2, 4/3, etc.) and are a natural outcome of standard planetary formation theories. Systems with multiple adjacent resonant pairs are known as resonant chains and can exhibit three-body resonances—characterized by a critical three-body angle. Here we study three-body angles as a diagnostic of resonant chains through tidally damped
N
-body integrations. For each combination of the 2:1, 3:2, 4:3, and 5:4 mean motion resonances (the most common resonances in the known resonant chains), we characterize the three-body angle equilibria for several mass schemes, migration timescales, and initial separations. We find that under our formulation of the three-body angle, which does not reduce coefficients, 180° is the preferred libration center, and libration centers shifted away from 180° are associated with nonadjacent resonances. We then relate these angles to observables, by applying our general results to two transiting systems: Kepler-60 and Kepler-223. For these systems, we compare
N
-body models of the three-body angle to the zeroth order in
e
approximation accessible via transit phases, used in previous publications. In both cases, we find the three-body angle during the Kepler observing window is not necessarily indicative of the long-term oscillations and stress the role of dynamical models in investigating three-body angles. We anticipate our results will provide a useful diagnostic in the analysis of resonant chains. |
---|---|
Bibliography: | AAS27391 The Solar System, Exoplanets, and Astrobiology |
ISSN: | 0004-6256 1538-3881 |
DOI: | 10.3847/1538-3881/abf8a6 |