Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment

In the vision of hyperthermia application, high quality superparamagnetic MnFe2O4 nanoparticles (NPs) were synthesized via low cost and environment-friendly co-precipitation method. Thermogravimetric and differential thermal analysis studies confirmed the ferritization temperature at 900 °C. The for...

Full description

Saved in:
Bibliographic Details
Published inCeramics international Vol. 46; no. 16; pp. 25576 - 25583
Main Authors Patade, Supriya R., Andhare, Deepali D., Somvanshi, Sandeep B., Jadhav, Swapnil A., Khedkar, Mangesh V., Jadhav, K.M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2020
Subjects
Online AccessGet full text
ISSN0272-8842
1873-3956
DOI10.1016/j.ceramint.2020.07.029

Cover

Loading…
Abstract In the vision of hyperthermia application, high quality superparamagnetic MnFe2O4 nanoparticles (NPs) were synthesized via low cost and environment-friendly co-precipitation method. Thermogravimetric and differential thermal analysis studies confirmed the ferritization temperature at 900 °C. The formation of crystals with a single-phase cubic spinel structure with the Fd3m space group has been confirmed by XRD analysis. SEM-EDX result reveals that the spherical nature of grains with some agglomeration and elemental analysis helps to calculate the atomic percentage of each detected element. An average particle size (~25 nm) was determined by TEM analysis. VSM analysis shows that saturation magnetization (Ms) increases with decreasing temperature in the range 54.18–59.67emu/g at room temperature (300K) to low temperature (5K), respectively, which displays temperature change affects the saturation magnetization and coercivity. FC-ZFC measurements indicated a blocking temperature of NPs around 97.17K. The induction heating study was performed on MnFe2O4 magnetic NPs at 4 kA/m AC magnetic field amplitude and 280 kHz frequency for application in magnetic hyperthermia. The result demonstrates that the heating ability of MnFe2O4 magnetic NPs can be achieved hyperthermia temperature (42 °C) at small content of 0.4 g/mL within 260sec-time duration, which confirms that the prepared material can be used as a heating agent in magnetic hyperthermic treatment. The specific absorption rate (SAR) was found at 217.62 W/g, the obtained result is superior to the previous reports. The obtained results show that the newly synthesized superparamagnetic NPs can act as a promising candidate for hyperthermia therapy due to its high heat-generating capability at lower concentrations with less time period. [Display omitted]
AbstractList In the vision of hyperthermia application, high quality superparamagnetic MnFe2O4 nanoparticles (NPs) were synthesized via low cost and environment-friendly co-precipitation method. Thermogravimetric and differential thermal analysis studies confirmed the ferritization temperature at 900 °C. The formation of crystals with a single-phase cubic spinel structure with the Fd3m space group has been confirmed by XRD analysis. SEM-EDX result reveals that the spherical nature of grains with some agglomeration and elemental analysis helps to calculate the atomic percentage of each detected element. An average particle size (~25 nm) was determined by TEM analysis. VSM analysis shows that saturation magnetization (Ms) increases with decreasing temperature in the range 54.18–59.67emu/g at room temperature (300K) to low temperature (5K), respectively, which displays temperature change affects the saturation magnetization and coercivity. FC-ZFC measurements indicated a blocking temperature of NPs around 97.17K. The induction heating study was performed on MnFe2O4 magnetic NPs at 4 kA/m AC magnetic field amplitude and 280 kHz frequency for application in magnetic hyperthermia. The result demonstrates that the heating ability of MnFe2O4 magnetic NPs can be achieved hyperthermia temperature (42 °C) at small content of 0.4 g/mL within 260sec-time duration, which confirms that the prepared material can be used as a heating agent in magnetic hyperthermic treatment. The specific absorption rate (SAR) was found at 217.62 W/g, the obtained result is superior to the previous reports. The obtained results show that the newly synthesized superparamagnetic NPs can act as a promising candidate for hyperthermia therapy due to its high heat-generating capability at lower concentrations with less time period. [Display omitted]
Author Jadhav, K.M.
Khedkar, Mangesh V.
Patade, Supriya R.
Andhare, Deepali D.
Somvanshi, Sandeep B.
Jadhav, Swapnil A.
Author_xml – sequence: 1
  givenname: Supriya R.
  surname: Patade
  fullname: Patade, Supriya R.
– sequence: 2
  givenname: Deepali D.
  surname: Andhare
  fullname: Andhare, Deepali D.
– sequence: 3
  givenname: Sandeep B.
  surname: Somvanshi
  fullname: Somvanshi, Sandeep B.
– sequence: 4
  givenname: Swapnil A.
  surname: Jadhav
  fullname: Jadhav, Swapnil A.
– sequence: 5
  givenname: Mangesh V.
  surname: Khedkar
  fullname: Khedkar, Mangesh V.
– sequence: 6
  givenname: K.M.
  surname: Jadhav
  fullname: Jadhav, K.M.
  email: drjadhavkm@gmail.com
BookMark eNqFkN9KwzAUh4NMcP55BckLtKZJ16bghSJOhYkX6nU4S09cRpeWJJv4BL62mVMvvBkEEnLy_XLOd0xGrndIyHnB8oIV1cUy1-hhZV3MOeMsZ3XOeHNAxoWsRSaaSTUiY8ZrnklZ8iNyHMKSJbAp2Zh8PmNnsgVCtO6N4ga6dTr2jvaGhvWAfoCUDW8Oo9X00U2RP5XUgetTIV11GKjpPf17Yrq1beniI6FxgX5lgcIwdFbvYmP_Dr4NVINLXdPo088rdPGUHBroAp797CfkdXr7cnOfzZ7uHm6uZ5kWtYyZmYuGt1JXupWQVsPBCKwZL2rdmgIlypI1HMsKBUgxmbNJDRx4MeFVK4QWJ6Ta5Wrfh-DRqMHbFfgPVTC11amW6len2upUrFZJZwIv_4Haxu-Zogfb7cevdjim4TYWvQraYnLQWo86qra3-yK-APH6nMI
CitedBy_id crossref_primary_10_1021_acsami_2c06457
crossref_primary_10_1016_j_nanoso_2024_101312
crossref_primary_10_1016_j_hybadv_2024_100163
crossref_primary_10_1016_j_surfin_2024_104737
crossref_primary_10_1016_j_cplett_2024_141399
crossref_primary_10_1016_j_jallcom_2022_163992
crossref_primary_10_1038_s41598_021_80997_z
crossref_primary_10_1016_j_ceramint_2020_11_049
crossref_primary_10_1088_1742_6596_1644_1_012042
crossref_primary_10_1016_j_jallcom_2023_172998
crossref_primary_10_1016_j_jallcom_2023_172999
crossref_primary_10_3390_ijms24032156
crossref_primary_10_3103_S1061386221020059
crossref_primary_10_1007_s10854_021_06562_6
crossref_primary_10_1039_D4NJ02783C
crossref_primary_10_1016_j_cherd_2021_08_028
crossref_primary_10_3390_pharmaceutics14020435
crossref_primary_10_1007_s11664_022_09813_2
crossref_primary_10_1088_1742_6596_1644_1_012046
crossref_primary_10_1016_j_ceramint_2024_08_421
crossref_primary_10_1016_j_colsurfa_2023_132037
crossref_primary_10_1080_10717544_2022_2039804
crossref_primary_10_1016_j_jics_2022_100658
crossref_primary_10_1016_j_jwpe_2022_102785
crossref_primary_10_1038_s44222_024_00257_3
crossref_primary_10_4028_p_95jpl8
crossref_primary_10_1016_j_inoche_2023_111590
crossref_primary_10_1016_j_inoche_2022_109828
crossref_primary_10_1016_j_ceramint_2021_10_138
crossref_primary_10_1016_j_inoche_2023_110666
crossref_primary_10_1016_j_jece_2021_106344
crossref_primary_10_1016_j_est_2023_109494
crossref_primary_10_1016_j_inoche_2023_111355
crossref_primary_10_1007_s10876_024_02598_w
crossref_primary_10_1016_j_inoche_2024_113037
crossref_primary_10_1016_j_physb_2023_414835
crossref_primary_10_1007_s10948_024_06788_5
crossref_primary_10_1016_j_matpr_2023_04_273
crossref_primary_10_1088_1742_6596_1644_1_012059
crossref_primary_10_3389_fbioe_2022_873453
crossref_primary_10_1039_D2NA00394E
crossref_primary_10_1016_j_est_2022_104871
crossref_primary_10_1007_s40544_022_0676_8
crossref_primary_10_1016_j_est_2022_105320
crossref_primary_10_1016_j_molstruc_2022_132994
crossref_primary_10_1016_j_jmmm_2022_169236
crossref_primary_10_3390_nano13030453
crossref_primary_10_1016_j_cej_2022_136050
crossref_primary_10_1016_j_jmmm_2023_170868
crossref_primary_10_1007_s43939_023_00056_4
crossref_primary_10_1016_j_jmmm_2022_170108
crossref_primary_10_1016_j_biomaterials_2022_121533
crossref_primary_10_1007_s00339_023_07160_5
crossref_primary_10_1007_s11270_024_07619_y
crossref_primary_10_1007_s10934_022_01259_5
crossref_primary_10_1016_j_ceramint_2021_11_024
crossref_primary_10_1038_s41598_021_99236_6
crossref_primary_10_1088_2632_959X_ad0ee9
crossref_primary_10_1016_j_ceramint_2020_08_284
crossref_primary_10_1007_s10971_024_06323_x
crossref_primary_10_1039_D3RA03797E
crossref_primary_10_1016_j_surfin_2023_103377
crossref_primary_10_1080_00150193_2023_2269160
crossref_primary_10_1021_acsanm_2c04960
crossref_primary_10_1016_j_jmmm_2022_170219
crossref_primary_10_1016_j_solidstatesciences_2024_107573
crossref_primary_10_1007_s11051_025_06228_y
crossref_primary_10_1016_j_jtherbio_2024_103936
crossref_primary_10_1007_s10854_021_07568_w
crossref_primary_10_1007_s10854_022_07897_4
crossref_primary_10_1016_j_inoche_2023_110569
crossref_primary_10_1088_1742_6596_1644_1_012036
crossref_primary_10_1016_j_cplett_2020_137993
crossref_primary_10_1007_s00339_021_04653_z
crossref_primary_10_1007_s10948_021_05830_0
crossref_primary_10_1002_zaac_202100190
crossref_primary_10_1007_s10854_020_05197_3
crossref_primary_10_1007_s10854_024_12123_4
crossref_primary_10_1007_s13538_023_01300_1
crossref_primary_10_1016_j_inoche_2022_110072
crossref_primary_10_1007_s10854_021_05946_y
crossref_primary_10_1016_j_ceramint_2023_06_223
crossref_primary_10_1007_s10854_022_07989_1
crossref_primary_10_1007_s10854_020_04295_6
crossref_primary_10_1007_s10854_022_07978_4
crossref_primary_10_1016_j_ijhydene_2023_04_313
crossref_primary_10_1007_s10854_022_09332_0
crossref_primary_10_1016_j_physb_2022_414368
crossref_primary_10_1016_j_arabjc_2024_105840
crossref_primary_10_1016_j_jmrt_2022_02_052
crossref_primary_10_34133_bmr_0158
crossref_primary_10_4028_p_d4athz
crossref_primary_10_1080_16583655_2023_2236368
crossref_primary_10_4028_p_1pbj14
crossref_primary_10_48175_IJARSCT_8600
crossref_primary_10_1016_j_physo_2023_100172
crossref_primary_10_1016_j_jpcs_2025_112586
crossref_primary_10_1016_j_rinma_2023_100431
crossref_primary_10_1016_j_heliyon_2023_e19893
crossref_primary_10_1016_j_mtla_2021_101152
crossref_primary_10_1016_j_jallcom_2023_171868
crossref_primary_10_1002_qua_27124
crossref_primary_10_1007_s00339_021_04603_9
crossref_primary_10_3389_fbioe_2024_1436297
crossref_primary_10_1016_j_matchemphys_2022_125723
crossref_primary_10_1016_j_colsurfa_2024_135483
crossref_primary_10_1021_acsomega_0c03332
crossref_primary_10_1088_1361_6528_ac5ee4
crossref_primary_10_1016_j_jallcom_2023_172205
crossref_primary_10_1038_s41598_023_41729_7
crossref_primary_10_1016_j_jmrt_2024_10_229
crossref_primary_10_1007_s10854_022_08562_6
crossref_primary_10_1016_j_jiec_2021_07_043
crossref_primary_10_1016_j_mseb_2023_116717
crossref_primary_10_1016_j_rinp_2021_104441
crossref_primary_10_1007_s10854_024_12022_8
crossref_primary_10_1088_1361_6528_ac31e8
crossref_primary_10_1016_j_device_2024_100654
crossref_primary_10_1007_s10854_023_11515_2
crossref_primary_10_1016_j_powtec_2023_118720
crossref_primary_10_1016_j_ceramint_2021_01_267
crossref_primary_10_1007_s10973_024_13348_5
crossref_primary_10_1016_j_ceramint_2021_08_139
crossref_primary_10_1016_j_mseb_2025_118058
crossref_primary_10_1080_10420150_2024_2381228
crossref_primary_10_1002_gch2_202000068
crossref_primary_10_1007_s42247_025_01021_y
crossref_primary_10_1088_1361_6528_ace3cb
crossref_primary_10_1007_s10653_024_02213_x
crossref_primary_10_1016_j_rinp_2023_107306
crossref_primary_10_1088_1361_6528_ac2c42
crossref_primary_10_1007_s12034_024_03283_4
crossref_primary_10_1016_j_rinp_2023_106320
crossref_primary_10_1016_j_apradiso_2024_111199
crossref_primary_10_1016_j_matchemphys_2023_128832
crossref_primary_10_1016_j_mtla_2023_101695
crossref_primary_10_1016_j_surfin_2022_102189
crossref_primary_10_1142_S0217979225500419
crossref_primary_10_1002_smll_202302808
crossref_primary_10_1016_j_ceramint_2023_12_343
crossref_primary_10_1016_j_matchemphys_2022_126117
crossref_primary_10_1016_j_rinma_2024_100596
crossref_primary_10_1007_s11664_024_10971_8
crossref_primary_10_1016_j_physb_2021_413083
crossref_primary_10_1016_j_ceramint_2024_04_264
crossref_primary_10_1109_TNB_2021_3126905
crossref_primary_10_1007_s13538_023_01349_y
crossref_primary_10_1016_j_inoche_2023_111850
crossref_primary_10_1177_08853282241244707
crossref_primary_10_3390_nano10122481
crossref_primary_10_1016_j_ceramint_2021_03_132
crossref_primary_10_1016_j_ijhydene_2024_08_163
crossref_primary_10_1063_5_0053985
crossref_primary_10_1515_ijmr_2023_0017
Cites_doi 10.1016/j.matchemphys.2013.08.066
10.1039/C3TB21146K
10.1088/0957-0233/23/3/035701
10.1039/C2DT31114C
10.1007/978-3-662-54357-3
10.3109/02656736.2013.836758
10.1016/j.jmmm.2011.10.017
10.1016/j.jmmm.2009.05.023
10.1016/j.cplett.2020.137240
10.1039/C4DT02293A
10.1039/C4TB01017E
10.3390/nano9101489
10.1016/j.jmmm.2017.05.076
10.1016/j.pnsc.2016.09.004
10.1016/j.jmmm.2004.09.138
10.1038/srep09090
10.1039/C5NJ00009B
10.1038/s41598-018-32934-w
10.1016/j.physb.2014.03.042
10.1016/j.rpor.2013.09.011
10.1016/j.matdes.2017.03.036
10.1016/j.addr.2012.10.008
10.1146/annurev-animal-031412-103644
10.1016/j.ceramint.2012.12.081
10.1034/j.1601-0825.2003.02839.x
10.1016/j.jmmm.2016.02.078
ContentType Journal Article
Copyright 2020 Elsevier Ltd and Techna Group S.r.l.
Copyright_xml – notice: 2020 Elsevier Ltd and Techna Group S.r.l.
DBID AAYXX
CITATION
DOI 10.1016/j.ceramint.2020.07.029
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3956
EndPage 25583
ExternalDocumentID 10_1016_j_ceramint_2020_07_029
S0272884220320290
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSM
SSZ
T5K
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c378t-fb392d8c6cd8ad8a92af3e70217cdf1e8e84092e46e3a835b057a2a21526d33c3
IEDL.DBID .~1
ISSN 0272-8842
IngestDate Tue Jul 01 03:38:40 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Fri Feb 23 02:39:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Manganese ferrite
VSM
SAR
Hyperthermia
FC-ZFC
Induction heating
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-fb392d8c6cd8ad8a92af3e70217cdf1e8e84092e46e3a835b057a2a21526d33c3
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_ceramint_2020_07_029
crossref_citationtrail_10_1016_j_ceramint_2020_07_029
elsevier_sciencedirect_doi_10_1016_j_ceramint_2020_07_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Ceramics international
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Baumgard, Rhoads (bib12) 2013; 1
Thirupathi, Singh (bib8) 2014; 448
Iqbal (bib28) 2016; 409
Mendo (bib19) 2015; 39
Hedayatnasab, Abnisa, Daud (bib3) 2017; 123
Latorre-Esteves (bib2) 2009; 321
Topkaya (bib17) 2013; 39
Doaga (bib29) 2013; 143
Makridis (bib23) 2014; 2
Patade (bib4) 2020
Lahiri (bib22) 2017; 441
Bañobre-López, Teijeiro, Rivas (bib13) 2013; 18
Huang (bib25) 2012; 23
Ruta, Chantrell, Hovorka (bib26) 2015; 5
Makridis (bib20) 2014; 2
Bhushan (bib1) 2017
Patade (bib6) 2020; 745
Liu (bib27) 2014; 2
Xu, Sun (bib10) 2013; 65
Wada (bib15) 2003; 9
Arulmurugan (bib7) 2005; 288
Iacovita (bib30) 2019; 9
Mendo (bib9) 2015; 39
Khot (bib21) 2013; 42
Patade (bib11) 2020
Sharma (bib14) 2018; 8
Abenojar (bib5) 2016; 26
Dennis, Ivkov (bib24) 2013; 29
Thorat (bib16) 2014; 43
Sharifi, Shokrollahi, Amiri (bib18) 2012; 324
Huang (10.1016/j.ceramint.2020.07.029_bib25) 2012; 23
Thirupathi (10.1016/j.ceramint.2020.07.029_bib8) 2014; 448
Ruta (10.1016/j.ceramint.2020.07.029_bib26) 2015; 5
Doaga (10.1016/j.ceramint.2020.07.029_bib29) 2013; 143
Iqbal (10.1016/j.ceramint.2020.07.029_bib28) 2016; 409
Lahiri (10.1016/j.ceramint.2020.07.029_bib22) 2017; 441
Iacovita (10.1016/j.ceramint.2020.07.029_bib30) 2019; 9
Patade (10.1016/j.ceramint.2020.07.029_bib4) 2020
Patade (10.1016/j.ceramint.2020.07.029_bib11) 2020
Makridis (10.1016/j.ceramint.2020.07.029_bib20) 2014; 2
Patade (10.1016/j.ceramint.2020.07.029_bib6) 2020; 745
Makridis (10.1016/j.ceramint.2020.07.029_bib23) 2014; 2
Bañobre-López (10.1016/j.ceramint.2020.07.029_bib13) 2013; 18
Thorat (10.1016/j.ceramint.2020.07.029_bib16) 2014; 43
Khot (10.1016/j.ceramint.2020.07.029_bib21) 2013; 42
Sharma (10.1016/j.ceramint.2020.07.029_bib14) 2018; 8
Dennis (10.1016/j.ceramint.2020.07.029_bib24) 2013; 29
Arulmurugan (10.1016/j.ceramint.2020.07.029_bib7) 2005; 288
Hedayatnasab (10.1016/j.ceramint.2020.07.029_bib3) 2017; 123
Mendo (10.1016/j.ceramint.2020.07.029_bib19) 2015; 39
Sharifi (10.1016/j.ceramint.2020.07.029_bib18) 2012; 324
Mendo (10.1016/j.ceramint.2020.07.029_bib9) 2015; 39
Xu (10.1016/j.ceramint.2020.07.029_bib10) 2013; 65
Abenojar (10.1016/j.ceramint.2020.07.029_bib5) 2016; 26
Bhushan (10.1016/j.ceramint.2020.07.029_bib1) 2017
Baumgard (10.1016/j.ceramint.2020.07.029_bib12) 2013; 1
Wada (10.1016/j.ceramint.2020.07.029_bib15) 2003; 9
Topkaya (10.1016/j.ceramint.2020.07.029_bib17) 2013; 39
Latorre-Esteves (10.1016/j.ceramint.2020.07.029_bib2) 2009; 321
Liu (10.1016/j.ceramint.2020.07.029_bib27) 2014; 2
References_xml – volume: 5
  start-page: 9090
  year: 2015
  ident: bib26
  article-title: Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles
  publication-title: Sci. Rep.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib14
  article-title: Synthesis and characterization of monodispersed water dispersible Fe 3 O 4 nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition
  publication-title: Sci. Rep.
– year: 2017
  ident: bib1
  article-title: Springer Handbook of Nanotechnology
– volume: 65
  start-page: 732
  year: 2013
  end-page: 743
  ident: bib10
  article-title: New forms of superparamagnetic nanoparticles for biomedical applications
  publication-title: Adv. Drug Deliv. Rev.
– volume: 409
  start-page: 80
  year: 2016
  end-page: 86
  ident: bib28
  article-title: Magnetic heating of silica-coated manganese ferrite nanoparticles
  publication-title: J. Magn. Magn Mater.
– volume: 39
  start-page: 7182
  year: 2015
  end-page: 7193
  ident: bib9
  article-title: Hyperthermia studies of ferrite nanoparticles synthesized in the presence of cotton
  publication-title: New J. Chem.
– year: 2020
  ident: bib11
  article-title: Impact of crystallites on enhancement of bandgap of Mn1-xZnxFe2O4 (1≥ x≥ 0) nanospinels
  publication-title: Chem. Phys. Lett.
– volume: 2
  start-page: 120
  year: 2014
  end-page: 128
  ident: bib27
  article-title: Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents
  publication-title: J. Mater. Chem. B
– volume: 288
  start-page: 470
  year: 2005
  end-page: 477
  ident: bib7
  article-title: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation
  publication-title: J. Magn. Magn Mater.
– volume: 26
  start-page: 440
  year: 2016
  end-page: 448
  ident: bib5
  article-title: Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles
  publication-title: Prog. Nat. Sci.: Mater. Int.
– volume: 123
  start-page: 174
  year: 2017
  end-page: 196
  ident: bib3
  article-title: Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application
  publication-title: Mater. Des.
– volume: 321
  start-page: 3061
  year: 2009
  end-page: 3066
  ident: bib2
  article-title: Synthesis and characterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications
  publication-title: J. Magn. Magn Mater.
– volume: 324
  start-page: 903
  year: 2012
  end-page: 915
  ident: bib18
  article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications
  publication-title: J. Magn. Magn Mater.
– volume: 143
  start-page: 305
  year: 2013
  end-page: 310
  ident: bib29
  article-title: Synthesis and characterizations of manganese ferrites for hyperthermia applications
  publication-title: Mater. Chem. Phys.
– volume: 745
  year: 2020
  ident: bib6
  article-title: Impact of crystallites on enhancement of bandgap of Mn1-xZnxFe2O4 (1≥ x≥ 0) nanospinels
  publication-title: Chem. Phys. Lett.
– volume: 29
  start-page: 715
  year: 2013
  end-page: 729
  ident: bib24
  article-title: Physics of heat generation using magnetic nanoparticles for hyperthermia
  publication-title: Int. J. Hyperther.
– volume: 18
  start-page: 397
  year: 2013
  end-page: 400
  ident: bib13
  article-title: Magnetic nanoparticle-based hyperthermia for cancer treatment
  publication-title: Rep. Practical Oncol. Radiother.
– volume: 9
  start-page: 1489
  year: 2019
  ident: bib30
  article-title: Hyperthermia, cytotoxicity, and cellular uptake properties of manganese and zinc ferrite magnetic nanoparticles synthesized by a polyol-mediated process
  publication-title: Nanomaterials
– start-page: 1
  year: 2020
  end-page: 7
  ident: bib4
  article-title: Preparation and characterizations of magnetic nanofluid of zinc ferrite for hyperthermia application
  publication-title: Nanomater. Energy
– volume: 23
  year: 2012
  ident: bib25
  article-title: On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field
  publication-title: Meas. Sci. Technol.
– volume: 39
  start-page: 7182
  year: 2015
  end-page: 7193
  ident: bib19
  article-title: Hyperthermia studies of ferrite synthesized in the presence of nanoparticles cotton
  publication-title: New J. Chem.
– volume: 39
  start-page: 5651
  year: 2013
  end-page: 5658
  ident: bib17
  article-title: Polyvinylpyrrolidone (PVP)/MnFe2O4 nanocomposite: sol–Gel autocombustion synthesis and its magnetic characterization
  publication-title: Ceram. Int.
– volume: 1
  start-page: 311
  year: 2013
  end-page: 337
  ident: bib12
  article-title: Effects of heat stress on postabsorptive metabolism and energetics
  publication-title: Annu. Rev. Anim. Biosci.
– volume: 448
  start-page: 346
  year: 2014
  end-page: 348
  ident: bib8
  article-title: Magneto-viscosity of MnZn-ferrite ferrofluid
  publication-title: Phys. B Condens. Matter
– volume: 441
  start-page: 310
  year: 2017
  end-page: 327
  ident: bib22
  article-title: Magnetic hyperthermia in magnetic nanoemulsions: effects of polydispersity, particle concentration and medium viscosity
  publication-title: J. Magn. Magn Mater.
– volume: 2
  start-page: 8390
  year: 2014
  end-page: 8398
  ident: bib20
  article-title: In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents
  publication-title: J. Mater. Chem. B
– volume: 2
  start-page: 8390
  year: 2014
  end-page: 8398
  ident: bib23
  article-title: In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents
  publication-title: J. Mater. Chem. B
– volume: 42
  start-page: 1249
  year: 2013
  end-page: 1258
  ident: bib21
  article-title: Induction heating studies of dextran coated MgFe 2 O 4 nanoparticles for magnetic hyperthermia
  publication-title: Dalton Trans.
– volume: 9
  start-page: 218
  year: 2003
  end-page: 223
  ident: bib15
  article-title: Antitumor effect of new local hyperthermia using dextran magnetite complex in hamster tongue carcinoma
  publication-title: Oral Dis.
– volume: 43
  start-page: 17343
  year: 2014
  end-page: 17351
  ident: bib16
  article-title: Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells
  publication-title: Dalton Trans.
– volume: 143
  start-page: 305
  issue: 1
  year: 2013
  ident: 10.1016/j.ceramint.2020.07.029_bib29
  article-title: Synthesis and characterizations of manganese ferrites for hyperthermia applications
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2013.08.066
– volume: 2
  start-page: 120
  issue: 1
  year: 2014
  ident: 10.1016/j.ceramint.2020.07.029_bib27
  article-title: Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C3TB21146K
– volume: 23
  issue: 3
  year: 2012
  ident: 10.1016/j.ceramint.2020.07.029_bib25
  article-title: On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/23/3/035701
– volume: 42
  start-page: 1249
  issue: 4
  year: 2013
  ident: 10.1016/j.ceramint.2020.07.029_bib21
  article-title: Induction heating studies of dextran coated MgFe 2 O 4 nanoparticles for magnetic hyperthermia
  publication-title: Dalton Trans.
  doi: 10.1039/C2DT31114C
– year: 2017
  ident: 10.1016/j.ceramint.2020.07.029_bib1
  doi: 10.1007/978-3-662-54357-3
– volume: 29
  start-page: 715
  issue: 8
  year: 2013
  ident: 10.1016/j.ceramint.2020.07.029_bib24
  article-title: Physics of heat generation using magnetic nanoparticles for hyperthermia
  publication-title: Int. J. Hyperther.
  doi: 10.3109/02656736.2013.836758
– volume: 324
  start-page: 903
  issue: 6
  year: 2012
  ident: 10.1016/j.ceramint.2020.07.029_bib18
  article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/j.jmmm.2011.10.017
– volume: 321
  start-page: 3061
  issue: 19
  year: 2009
  ident: 10.1016/j.ceramint.2020.07.029_bib2
  article-title: Synthesis and characterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/j.jmmm.2009.05.023
– year: 2020
  ident: 10.1016/j.ceramint.2020.07.029_bib11
  article-title: Impact of crystallites on enhancement of bandgap of Mn1-xZnxFe2O4 (1≥ x≥ 0) nanospinels
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2020.137240
– volume: 43
  start-page: 17343
  issue: 46
  year: 2014
  ident: 10.1016/j.ceramint.2020.07.029_bib16
  article-title: Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT02293A
– volume: 2
  start-page: 8390
  issue: 47
  year: 2014
  ident: 10.1016/j.ceramint.2020.07.029_bib23
  article-title: In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB01017E
– volume: 9
  start-page: 1489
  issue: 10
  year: 2019
  ident: 10.1016/j.ceramint.2020.07.029_bib30
  article-title: Hyperthermia, cytotoxicity, and cellular uptake properties of manganese and zinc ferrite magnetic nanoparticles synthesized by a polyol-mediated process
  publication-title: Nanomaterials
  doi: 10.3390/nano9101489
– volume: 441
  start-page: 310
  year: 2017
  ident: 10.1016/j.ceramint.2020.07.029_bib22
  article-title: Magnetic hyperthermia in magnetic nanoemulsions: effects of polydispersity, particle concentration and medium viscosity
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/j.jmmm.2017.05.076
– volume: 26
  start-page: 440
  issue: 5
  year: 2016
  ident: 10.1016/j.ceramint.2020.07.029_bib5
  article-title: Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2016.09.004
– volume: 288
  start-page: 470
  year: 2005
  ident: 10.1016/j.ceramint.2020.07.029_bib7
  article-title: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/j.jmmm.2004.09.138
– volume: 2
  start-page: 8390
  year: 2014
  ident: 10.1016/j.ceramint.2020.07.029_bib20
  article-title: In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB01017E
– volume: 5
  start-page: 9090
  year: 2015
  ident: 10.1016/j.ceramint.2020.07.029_bib26
  article-title: Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles
  publication-title: Sci. Rep.
  doi: 10.1038/srep09090
– volume: 39
  start-page: 7182
  issue: 9
  year: 2015
  ident: 10.1016/j.ceramint.2020.07.029_bib9
  article-title: Hyperthermia studies of ferrite nanoparticles synthesized in the presence of cotton
  publication-title: New J. Chem.
  doi: 10.1039/C5NJ00009B
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.ceramint.2020.07.029_bib14
  article-title: Synthesis and characterization of monodispersed water dispersible Fe 3 O 4 nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32934-w
– volume: 745
  year: 2020
  ident: 10.1016/j.ceramint.2020.07.029_bib6
  article-title: Impact of crystallites on enhancement of bandgap of Mn1-xZnxFe2O4 (1≥ x≥ 0) nanospinels
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2020.137240
– volume: 448
  start-page: 346
  year: 2014
  ident: 10.1016/j.ceramint.2020.07.029_bib8
  article-title: Magneto-viscosity of MnZn-ferrite ferrofluid
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2014.03.042
– volume: 18
  start-page: 397
  issue: 6
  year: 2013
  ident: 10.1016/j.ceramint.2020.07.029_bib13
  article-title: Magnetic nanoparticle-based hyperthermia for cancer treatment
  publication-title: Rep. Practical Oncol. Radiother.
  doi: 10.1016/j.rpor.2013.09.011
– volume: 123
  start-page: 174
  year: 2017
  ident: 10.1016/j.ceramint.2020.07.029_bib3
  article-title: Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.03.036
– start-page: 1
  year: 2020
  ident: 10.1016/j.ceramint.2020.07.029_bib4
  article-title: Preparation and characterizations of magnetic nanofluid of zinc ferrite for hyperthermia application
  publication-title: Nanomater. Energy
– volume: 65
  start-page: 732
  issue: 5
  year: 2013
  ident: 10.1016/j.ceramint.2020.07.029_bib10
  article-title: New forms of superparamagnetic nanoparticles for biomedical applications
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.10.008
– volume: 1
  start-page: 311
  issue: 1
  year: 2013
  ident: 10.1016/j.ceramint.2020.07.029_bib12
  article-title: Effects of heat stress on postabsorptive metabolism and energetics
  publication-title: Annu. Rev. Anim. Biosci.
  doi: 10.1146/annurev-animal-031412-103644
– volume: 39
  start-page: 5651
  issue: 5
  year: 2013
  ident: 10.1016/j.ceramint.2020.07.029_bib17
  article-title: Polyvinylpyrrolidone (PVP)/MnFe2O4 nanocomposite: sol–Gel autocombustion synthesis and its magnetic characterization
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.12.081
– volume: 9
  start-page: 218
  issue: 4
  year: 2003
  ident: 10.1016/j.ceramint.2020.07.029_bib15
  article-title: Antitumor effect of new local hyperthermia using dextran magnetite complex in hamster tongue carcinoma
  publication-title: Oral Dis.
  doi: 10.1034/j.1601-0825.2003.02839.x
– volume: 39
  start-page: 7182
  issue: 9
  year: 2015
  ident: 10.1016/j.ceramint.2020.07.029_bib19
  article-title: Hyperthermia studies of ferrite synthesized in the presence of nanoparticles cotton
  publication-title: New J. Chem.
  doi: 10.1039/C5NJ00009B
– volume: 409
  start-page: 80
  year: 2016
  ident: 10.1016/j.ceramint.2020.07.029_bib28
  article-title: Magnetic heating of silica-coated manganese ferrite nanoparticles
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/j.jmmm.2016.02.078
SSID ssj0016940
Score 2.6119313
Snippet In the vision of hyperthermia application, high quality superparamagnetic MnFe2O4 nanoparticles (NPs) were synthesized via low cost and environment-friendly...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 25576
SubjectTerms FC-ZFC
Hyperthermia
Induction heating
Manganese ferrite
SAR
VSM
Title Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment
URI https://dx.doi.org/10.1016/j.ceramint.2020.07.029
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQXdqh6lN9Ig9dAyQ2iTMiVERbQQeKxBb52QZBQAHWrv3bPedVKlViqJTFkS-KfJfzd853dwg9uMo1AVPaUW3DHeqTtsOFEA44Rs4ZUaHmNnd4OPIHE_o87UxrqFfmwlhaZeH7c5-eeeviTqtYzdYqjltjCKg8xqiX9wAPbdxOaWCtvPlZ0TxcP6T5OUsAXz7M3skSnjWlTvkiTiyn0mtnRTwzqPnHBrWz6fRP0HGBFnE3f6FTVNPJGTraqSF4jr7Gem4c61JhiH-Kd-OlwevtSqe2uPeCvyc2WxEPk772XilOeALRckGKwwBccTXFzLexwh8Qn6YWHC5ijnf-cuNNxrNdY2nNJcUVUf0CTfqPb72BU3RXcCQJ2MYxAqCRYtKXinG4Qo8bogMbo0hlXM20jf08TX1NQGsdAciOe9z2wfUVIZJconqyTPQVwsQ1LuBItyOYooEnBRNCGglIIxTwdHqNOuWSRrIoPW47YMyjkmM2i0pVRFYVUTuIQBXXqFXJrfLiG3slwlJj0S8zimCH2CN78w_ZW3RoR3mS4h2qb9Ktvge0shGNzBwb6KD79DIYfQPL9e-f
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QOKgH4zO-3YPXCu32sT0SIikieFATbpt9ag1UUstv8G87S1vExISDSS99TNPsTGe_2Z35BqEbV7kmoko7qmO444ek43AhhAOOkXNKVKy5rR0ejcPkxb-fBJMG6tW1MDatsvL9pU9feuvqSrsazfY8TdtPEFB5lPpe2QM8hri9ZdmpgiZqdQfDZLzaTAhjv1xqieDnB4G1QuH3W6lzPkszm1bpdZY8nku0-ccctTbv9PfQbgUYcbf8pn3U0NkB2lmjETxEX096ahzrVeEU__B34w-DPxdznVt-7xl_zWzBIh5lfe09-jjjGQTMVV4cBuyKV4-Y6SJV-A1C1Nziw1nK8dpGNy6WqbafWFqLyfEqV_0IvfTvnnuJUzVYcCSJaOEYAehIURlKRTkcsccN0ZENU6Qyrqbahn-e9kNNQHGBAHDHPW5b4YaKEEmOUTP7yPQJwsQ1LkBJNxBU-ZEnBRVCGglgIxbwdv8UBfWQMlmxj9smGFNWp5m9s1oVzKqCdSIGqjhF7ZXcvOTf2CgR1xpjvyyJwSSxQfbsH7LXaCt5Hj2wh8F4eI627Z2yZvECNYt8oS8BvBTiqjLOb_kt8lA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-heating+evaluation+of+superparamagnetic+MnFe2O4+nanoparticles+for+magnetic+fluid+hyperthermia+application+towards+cancer+treatment&rft.jtitle=Ceramics+international&rft.au=Patade%2C+Supriya+R.&rft.au=Andhare%2C+Deepali+D.&rft.au=Somvanshi%2C+Sandeep+B.&rft.au=Jadhav%2C+Swapnil+A.&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=46&rft.issue=16&rft.spage=25576&rft.epage=25583&rft_id=info:doi/10.1016%2Fj.ceramint.2020.07.029&rft.externalDocID=S0272884220320290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon