Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment
In the vision of hyperthermia application, high quality superparamagnetic MnFe2O4 nanoparticles (NPs) were synthesized via low cost and environment-friendly co-precipitation method. Thermogravimetric and differential thermal analysis studies confirmed the ferritization temperature at 900 °C. The for...
Saved in:
Published in | Ceramics international Vol. 46; no. 16; pp. 25576 - 25583 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0272-8842 1873-3956 |
DOI | 10.1016/j.ceramint.2020.07.029 |
Cover
Loading…
Abstract | In the vision of hyperthermia application, high quality superparamagnetic MnFe2O4 nanoparticles (NPs) were synthesized via low cost and environment-friendly co-precipitation method. Thermogravimetric and differential thermal analysis studies confirmed the ferritization temperature at 900 °C. The formation of crystals with a single-phase cubic spinel structure with the Fd3m space group has been confirmed by XRD analysis. SEM-EDX result reveals that the spherical nature of grains with some agglomeration and elemental analysis helps to calculate the atomic percentage of each detected element. An average particle size (~25 nm) was determined by TEM analysis. VSM analysis shows that saturation magnetization (Ms) increases with decreasing temperature in the range 54.18–59.67emu/g at room temperature (300K) to low temperature (5K), respectively, which displays temperature change affects the saturation magnetization and coercivity. FC-ZFC measurements indicated a blocking temperature of NPs around 97.17K. The induction heating study was performed on MnFe2O4 magnetic NPs at 4 kA/m AC magnetic field amplitude and 280 kHz frequency for application in magnetic hyperthermia. The result demonstrates that the heating ability of MnFe2O4 magnetic NPs can be achieved hyperthermia temperature (42 °C) at small content of 0.4 g/mL within 260sec-time duration, which confirms that the prepared material can be used as a heating agent in magnetic hyperthermic treatment. The specific absorption rate (SAR) was found at 217.62 W/g, the obtained result is superior to the previous reports. The obtained results show that the newly synthesized superparamagnetic NPs can act as a promising candidate for hyperthermia therapy due to its high heat-generating capability at lower concentrations with less time period.
[Display omitted] |
---|---|
AbstractList | In the vision of hyperthermia application, high quality superparamagnetic MnFe2O4 nanoparticles (NPs) were synthesized via low cost and environment-friendly co-precipitation method. Thermogravimetric and differential thermal analysis studies confirmed the ferritization temperature at 900 °C. The formation of crystals with a single-phase cubic spinel structure with the Fd3m space group has been confirmed by XRD analysis. SEM-EDX result reveals that the spherical nature of grains with some agglomeration and elemental analysis helps to calculate the atomic percentage of each detected element. An average particle size (~25 nm) was determined by TEM analysis. VSM analysis shows that saturation magnetization (Ms) increases with decreasing temperature in the range 54.18–59.67emu/g at room temperature (300K) to low temperature (5K), respectively, which displays temperature change affects the saturation magnetization and coercivity. FC-ZFC measurements indicated a blocking temperature of NPs around 97.17K. The induction heating study was performed on MnFe2O4 magnetic NPs at 4 kA/m AC magnetic field amplitude and 280 kHz frequency for application in magnetic hyperthermia. The result demonstrates that the heating ability of MnFe2O4 magnetic NPs can be achieved hyperthermia temperature (42 °C) at small content of 0.4 g/mL within 260sec-time duration, which confirms that the prepared material can be used as a heating agent in magnetic hyperthermic treatment. The specific absorption rate (SAR) was found at 217.62 W/g, the obtained result is superior to the previous reports. The obtained results show that the newly synthesized superparamagnetic NPs can act as a promising candidate for hyperthermia therapy due to its high heat-generating capability at lower concentrations with less time period.
[Display omitted] |
Author | Jadhav, K.M. Khedkar, Mangesh V. Patade, Supriya R. Andhare, Deepali D. Somvanshi, Sandeep B. Jadhav, Swapnil A. |
Author_xml | – sequence: 1 givenname: Supriya R. surname: Patade fullname: Patade, Supriya R. – sequence: 2 givenname: Deepali D. surname: Andhare fullname: Andhare, Deepali D. – sequence: 3 givenname: Sandeep B. surname: Somvanshi fullname: Somvanshi, Sandeep B. – sequence: 4 givenname: Swapnil A. surname: Jadhav fullname: Jadhav, Swapnil A. – sequence: 5 givenname: Mangesh V. surname: Khedkar fullname: Khedkar, Mangesh V. – sequence: 6 givenname: K.M. surname: Jadhav fullname: Jadhav, K.M. email: drjadhavkm@gmail.com |
BookMark | eNqFkN9KwzAUh4NMcP55BckLtKZJ16bghSJOhYkX6nU4S09cRpeWJJv4BL62mVMvvBkEEnLy_XLOd0xGrndIyHnB8oIV1cUy1-hhZV3MOeMsZ3XOeHNAxoWsRSaaSTUiY8ZrnklZ8iNyHMKSJbAp2Zh8PmNnsgVCtO6N4ga6dTr2jvaGhvWAfoCUDW8Oo9X00U2RP5XUgetTIV11GKjpPf17Yrq1beniI6FxgX5lgcIwdFbvYmP_Dr4NVINLXdPo088rdPGUHBroAp797CfkdXr7cnOfzZ7uHm6uZ5kWtYyZmYuGt1JXupWQVsPBCKwZL2rdmgIlypI1HMsKBUgxmbNJDRx4MeFVK4QWJ6Ta5Wrfh-DRqMHbFfgPVTC11amW6len2upUrFZJZwIv_4Haxu-Zogfb7cevdjim4TYWvQraYnLQWo86qra3-yK-APH6nMI |
CitedBy_id | crossref_primary_10_1021_acsami_2c06457 crossref_primary_10_1016_j_nanoso_2024_101312 crossref_primary_10_1016_j_hybadv_2024_100163 crossref_primary_10_1016_j_surfin_2024_104737 crossref_primary_10_1016_j_cplett_2024_141399 crossref_primary_10_1016_j_jallcom_2022_163992 crossref_primary_10_1038_s41598_021_80997_z crossref_primary_10_1016_j_ceramint_2020_11_049 crossref_primary_10_1088_1742_6596_1644_1_012042 crossref_primary_10_1016_j_jallcom_2023_172998 crossref_primary_10_1016_j_jallcom_2023_172999 crossref_primary_10_3390_ijms24032156 crossref_primary_10_3103_S1061386221020059 crossref_primary_10_1007_s10854_021_06562_6 crossref_primary_10_1039_D4NJ02783C crossref_primary_10_1016_j_cherd_2021_08_028 crossref_primary_10_3390_pharmaceutics14020435 crossref_primary_10_1007_s11664_022_09813_2 crossref_primary_10_1088_1742_6596_1644_1_012046 crossref_primary_10_1016_j_ceramint_2024_08_421 crossref_primary_10_1016_j_colsurfa_2023_132037 crossref_primary_10_1080_10717544_2022_2039804 crossref_primary_10_1016_j_jics_2022_100658 crossref_primary_10_1016_j_jwpe_2022_102785 crossref_primary_10_1038_s44222_024_00257_3 crossref_primary_10_4028_p_95jpl8 crossref_primary_10_1016_j_inoche_2023_111590 crossref_primary_10_1016_j_inoche_2022_109828 crossref_primary_10_1016_j_ceramint_2021_10_138 crossref_primary_10_1016_j_inoche_2023_110666 crossref_primary_10_1016_j_jece_2021_106344 crossref_primary_10_1016_j_est_2023_109494 crossref_primary_10_1016_j_inoche_2023_111355 crossref_primary_10_1007_s10876_024_02598_w crossref_primary_10_1016_j_inoche_2024_113037 crossref_primary_10_1016_j_physb_2023_414835 crossref_primary_10_1007_s10948_024_06788_5 crossref_primary_10_1016_j_matpr_2023_04_273 crossref_primary_10_1088_1742_6596_1644_1_012059 crossref_primary_10_3389_fbioe_2022_873453 crossref_primary_10_1039_D2NA00394E crossref_primary_10_1016_j_est_2022_104871 crossref_primary_10_1007_s40544_022_0676_8 crossref_primary_10_1016_j_est_2022_105320 crossref_primary_10_1016_j_molstruc_2022_132994 crossref_primary_10_1016_j_jmmm_2022_169236 crossref_primary_10_3390_nano13030453 crossref_primary_10_1016_j_cej_2022_136050 crossref_primary_10_1016_j_jmmm_2023_170868 crossref_primary_10_1007_s43939_023_00056_4 crossref_primary_10_1016_j_jmmm_2022_170108 crossref_primary_10_1016_j_biomaterials_2022_121533 crossref_primary_10_1007_s00339_023_07160_5 crossref_primary_10_1007_s11270_024_07619_y crossref_primary_10_1007_s10934_022_01259_5 crossref_primary_10_1016_j_ceramint_2021_11_024 crossref_primary_10_1038_s41598_021_99236_6 crossref_primary_10_1088_2632_959X_ad0ee9 crossref_primary_10_1016_j_ceramint_2020_08_284 crossref_primary_10_1007_s10971_024_06323_x crossref_primary_10_1039_D3RA03797E crossref_primary_10_1016_j_surfin_2023_103377 crossref_primary_10_1080_00150193_2023_2269160 crossref_primary_10_1021_acsanm_2c04960 crossref_primary_10_1016_j_jmmm_2022_170219 crossref_primary_10_1016_j_solidstatesciences_2024_107573 crossref_primary_10_1007_s11051_025_06228_y crossref_primary_10_1016_j_jtherbio_2024_103936 crossref_primary_10_1007_s10854_021_07568_w crossref_primary_10_1007_s10854_022_07897_4 crossref_primary_10_1016_j_inoche_2023_110569 crossref_primary_10_1088_1742_6596_1644_1_012036 crossref_primary_10_1016_j_cplett_2020_137993 crossref_primary_10_1007_s00339_021_04653_z crossref_primary_10_1007_s10948_021_05830_0 crossref_primary_10_1002_zaac_202100190 crossref_primary_10_1007_s10854_020_05197_3 crossref_primary_10_1007_s10854_024_12123_4 crossref_primary_10_1007_s13538_023_01300_1 crossref_primary_10_1016_j_inoche_2022_110072 crossref_primary_10_1007_s10854_021_05946_y crossref_primary_10_1016_j_ceramint_2023_06_223 crossref_primary_10_1007_s10854_022_07989_1 crossref_primary_10_1007_s10854_020_04295_6 crossref_primary_10_1007_s10854_022_07978_4 crossref_primary_10_1016_j_ijhydene_2023_04_313 crossref_primary_10_1007_s10854_022_09332_0 crossref_primary_10_1016_j_physb_2022_414368 crossref_primary_10_1016_j_arabjc_2024_105840 crossref_primary_10_1016_j_jmrt_2022_02_052 crossref_primary_10_34133_bmr_0158 crossref_primary_10_4028_p_d4athz crossref_primary_10_1080_16583655_2023_2236368 crossref_primary_10_4028_p_1pbj14 crossref_primary_10_48175_IJARSCT_8600 crossref_primary_10_1016_j_physo_2023_100172 crossref_primary_10_1016_j_jpcs_2025_112586 crossref_primary_10_1016_j_rinma_2023_100431 crossref_primary_10_1016_j_heliyon_2023_e19893 crossref_primary_10_1016_j_mtla_2021_101152 crossref_primary_10_1016_j_jallcom_2023_171868 crossref_primary_10_1002_qua_27124 crossref_primary_10_1007_s00339_021_04603_9 crossref_primary_10_3389_fbioe_2024_1436297 crossref_primary_10_1016_j_matchemphys_2022_125723 crossref_primary_10_1016_j_colsurfa_2024_135483 crossref_primary_10_1021_acsomega_0c03332 crossref_primary_10_1088_1361_6528_ac5ee4 crossref_primary_10_1016_j_jallcom_2023_172205 crossref_primary_10_1038_s41598_023_41729_7 crossref_primary_10_1016_j_jmrt_2024_10_229 crossref_primary_10_1007_s10854_022_08562_6 crossref_primary_10_1016_j_jiec_2021_07_043 crossref_primary_10_1016_j_mseb_2023_116717 crossref_primary_10_1016_j_rinp_2021_104441 crossref_primary_10_1007_s10854_024_12022_8 crossref_primary_10_1088_1361_6528_ac31e8 crossref_primary_10_1016_j_device_2024_100654 crossref_primary_10_1007_s10854_023_11515_2 crossref_primary_10_1016_j_powtec_2023_118720 crossref_primary_10_1016_j_ceramint_2021_01_267 crossref_primary_10_1007_s10973_024_13348_5 crossref_primary_10_1016_j_ceramint_2021_08_139 crossref_primary_10_1016_j_mseb_2025_118058 crossref_primary_10_1080_10420150_2024_2381228 crossref_primary_10_1002_gch2_202000068 crossref_primary_10_1007_s42247_025_01021_y crossref_primary_10_1088_1361_6528_ace3cb crossref_primary_10_1007_s10653_024_02213_x crossref_primary_10_1016_j_rinp_2023_107306 crossref_primary_10_1088_1361_6528_ac2c42 crossref_primary_10_1007_s12034_024_03283_4 crossref_primary_10_1016_j_rinp_2023_106320 crossref_primary_10_1016_j_apradiso_2024_111199 crossref_primary_10_1016_j_matchemphys_2023_128832 crossref_primary_10_1016_j_mtla_2023_101695 crossref_primary_10_1016_j_surfin_2022_102189 crossref_primary_10_1142_S0217979225500419 crossref_primary_10_1002_smll_202302808 crossref_primary_10_1016_j_ceramint_2023_12_343 crossref_primary_10_1016_j_matchemphys_2022_126117 crossref_primary_10_1016_j_rinma_2024_100596 crossref_primary_10_1007_s11664_024_10971_8 crossref_primary_10_1016_j_physb_2021_413083 crossref_primary_10_1016_j_ceramint_2024_04_264 crossref_primary_10_1109_TNB_2021_3126905 crossref_primary_10_1007_s13538_023_01349_y crossref_primary_10_1016_j_inoche_2023_111850 crossref_primary_10_1177_08853282241244707 crossref_primary_10_3390_nano10122481 crossref_primary_10_1016_j_ceramint_2021_03_132 crossref_primary_10_1016_j_ijhydene_2024_08_163 crossref_primary_10_1063_5_0053985 crossref_primary_10_1515_ijmr_2023_0017 |
Cites_doi | 10.1016/j.matchemphys.2013.08.066 10.1039/C3TB21146K 10.1088/0957-0233/23/3/035701 10.1039/C2DT31114C 10.1007/978-3-662-54357-3 10.3109/02656736.2013.836758 10.1016/j.jmmm.2011.10.017 10.1016/j.jmmm.2009.05.023 10.1016/j.cplett.2020.137240 10.1039/C4DT02293A 10.1039/C4TB01017E 10.3390/nano9101489 10.1016/j.jmmm.2017.05.076 10.1016/j.pnsc.2016.09.004 10.1016/j.jmmm.2004.09.138 10.1038/srep09090 10.1039/C5NJ00009B 10.1038/s41598-018-32934-w 10.1016/j.physb.2014.03.042 10.1016/j.rpor.2013.09.011 10.1016/j.matdes.2017.03.036 10.1016/j.addr.2012.10.008 10.1146/annurev-animal-031412-103644 10.1016/j.ceramint.2012.12.081 10.1034/j.1601-0825.2003.02839.x 10.1016/j.jmmm.2016.02.078 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd and Techna Group S.r.l. |
Copyright_xml | – notice: 2020 Elsevier Ltd and Techna Group S.r.l. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ceramint.2020.07.029 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3956 |
EndPage | 25583 |
ExternalDocumentID | 10_1016_j_ceramint_2020_07_029 S0272884220320290 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SSM SSZ T5K WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c378t-fb392d8c6cd8ad8a92af3e70217cdf1e8e84092e46e3a835b057a2a21526d33c3 |
IEDL.DBID | .~1 |
ISSN | 0272-8842 |
IngestDate | Tue Jul 01 03:38:40 EDT 2025 Thu Apr 24 22:57:16 EDT 2025 Fri Feb 23 02:39:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Manganese ferrite VSM SAR Hyperthermia FC-ZFC Induction heating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-fb392d8c6cd8ad8a92af3e70217cdf1e8e84092e46e3a835b057a2a21526d33c3 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_ceramint_2020_07_029 crossref_citationtrail_10_1016_j_ceramint_2020_07_029 elsevier_sciencedirect_doi_10_1016_j_ceramint_2020_07_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationTitle | Ceramics international |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Baumgard, Rhoads (bib12) 2013; 1 Thirupathi, Singh (bib8) 2014; 448 Iqbal (bib28) 2016; 409 Mendo (bib19) 2015; 39 Hedayatnasab, Abnisa, Daud (bib3) 2017; 123 Latorre-Esteves (bib2) 2009; 321 Topkaya (bib17) 2013; 39 Doaga (bib29) 2013; 143 Makridis (bib23) 2014; 2 Patade (bib4) 2020 Lahiri (bib22) 2017; 441 Bañobre-López, Teijeiro, Rivas (bib13) 2013; 18 Huang (bib25) 2012; 23 Ruta, Chantrell, Hovorka (bib26) 2015; 5 Makridis (bib20) 2014; 2 Bhushan (bib1) 2017 Patade (bib6) 2020; 745 Liu (bib27) 2014; 2 Xu, Sun (bib10) 2013; 65 Wada (bib15) 2003; 9 Arulmurugan (bib7) 2005; 288 Iacovita (bib30) 2019; 9 Mendo (bib9) 2015; 39 Khot (bib21) 2013; 42 Patade (bib11) 2020 Sharma (bib14) 2018; 8 Abenojar (bib5) 2016; 26 Dennis, Ivkov (bib24) 2013; 29 Thorat (bib16) 2014; 43 Sharifi, Shokrollahi, Amiri (bib18) 2012; 324 Huang (10.1016/j.ceramint.2020.07.029_bib25) 2012; 23 Thirupathi (10.1016/j.ceramint.2020.07.029_bib8) 2014; 448 Ruta (10.1016/j.ceramint.2020.07.029_bib26) 2015; 5 Doaga (10.1016/j.ceramint.2020.07.029_bib29) 2013; 143 Iqbal (10.1016/j.ceramint.2020.07.029_bib28) 2016; 409 Lahiri (10.1016/j.ceramint.2020.07.029_bib22) 2017; 441 Iacovita (10.1016/j.ceramint.2020.07.029_bib30) 2019; 9 Patade (10.1016/j.ceramint.2020.07.029_bib4) 2020 Patade (10.1016/j.ceramint.2020.07.029_bib11) 2020 Makridis (10.1016/j.ceramint.2020.07.029_bib20) 2014; 2 Patade (10.1016/j.ceramint.2020.07.029_bib6) 2020; 745 Makridis (10.1016/j.ceramint.2020.07.029_bib23) 2014; 2 Bañobre-López (10.1016/j.ceramint.2020.07.029_bib13) 2013; 18 Thorat (10.1016/j.ceramint.2020.07.029_bib16) 2014; 43 Khot (10.1016/j.ceramint.2020.07.029_bib21) 2013; 42 Sharma (10.1016/j.ceramint.2020.07.029_bib14) 2018; 8 Dennis (10.1016/j.ceramint.2020.07.029_bib24) 2013; 29 Arulmurugan (10.1016/j.ceramint.2020.07.029_bib7) 2005; 288 Hedayatnasab (10.1016/j.ceramint.2020.07.029_bib3) 2017; 123 Mendo (10.1016/j.ceramint.2020.07.029_bib19) 2015; 39 Sharifi (10.1016/j.ceramint.2020.07.029_bib18) 2012; 324 Mendo (10.1016/j.ceramint.2020.07.029_bib9) 2015; 39 Xu (10.1016/j.ceramint.2020.07.029_bib10) 2013; 65 Abenojar (10.1016/j.ceramint.2020.07.029_bib5) 2016; 26 Bhushan (10.1016/j.ceramint.2020.07.029_bib1) 2017 Baumgard (10.1016/j.ceramint.2020.07.029_bib12) 2013; 1 Wada (10.1016/j.ceramint.2020.07.029_bib15) 2003; 9 Topkaya (10.1016/j.ceramint.2020.07.029_bib17) 2013; 39 Latorre-Esteves (10.1016/j.ceramint.2020.07.029_bib2) 2009; 321 Liu (10.1016/j.ceramint.2020.07.029_bib27) 2014; 2 |
References_xml | – volume: 5 start-page: 9090 year: 2015 ident: bib26 article-title: Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles publication-title: Sci. Rep. – volume: 8 start-page: 1 year: 2018 end-page: 11 ident: bib14 article-title: Synthesis and characterization of monodispersed water dispersible Fe 3 O 4 nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition publication-title: Sci. Rep. – year: 2017 ident: bib1 article-title: Springer Handbook of Nanotechnology – volume: 65 start-page: 732 year: 2013 end-page: 743 ident: bib10 article-title: New forms of superparamagnetic nanoparticles for biomedical applications publication-title: Adv. Drug Deliv. Rev. – volume: 409 start-page: 80 year: 2016 end-page: 86 ident: bib28 article-title: Magnetic heating of silica-coated manganese ferrite nanoparticles publication-title: J. Magn. Magn Mater. – volume: 39 start-page: 7182 year: 2015 end-page: 7193 ident: bib9 article-title: Hyperthermia studies of ferrite nanoparticles synthesized in the presence of cotton publication-title: New J. Chem. – year: 2020 ident: bib11 article-title: Impact of crystallites on enhancement of bandgap of Mn1-xZnxFe2O4 (1≥ x≥ 0) nanospinels publication-title: Chem. Phys. Lett. – volume: 2 start-page: 120 year: 2014 end-page: 128 ident: bib27 article-title: Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents publication-title: J. Mater. Chem. B – volume: 288 start-page: 470 year: 2005 end-page: 477 ident: bib7 article-title: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation publication-title: J. Magn. Magn Mater. – volume: 26 start-page: 440 year: 2016 end-page: 448 ident: bib5 article-title: Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles publication-title: Prog. Nat. Sci.: Mater. Int. – volume: 123 start-page: 174 year: 2017 end-page: 196 ident: bib3 article-title: Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application publication-title: Mater. Des. – volume: 321 start-page: 3061 year: 2009 end-page: 3066 ident: bib2 article-title: Synthesis and characterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications publication-title: J. Magn. Magn Mater. – volume: 324 start-page: 903 year: 2012 end-page: 915 ident: bib18 article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications publication-title: J. Magn. Magn Mater. – volume: 143 start-page: 305 year: 2013 end-page: 310 ident: bib29 article-title: Synthesis and characterizations of manganese ferrites for hyperthermia applications publication-title: Mater. Chem. Phys. – volume: 745 year: 2020 ident: bib6 article-title: Impact of crystallites on enhancement of bandgap of Mn1-xZnxFe2O4 (1≥ x≥ 0) nanospinels publication-title: Chem. Phys. Lett. – volume: 29 start-page: 715 year: 2013 end-page: 729 ident: bib24 article-title: Physics of heat generation using magnetic nanoparticles for hyperthermia publication-title: Int. J. Hyperther. – volume: 18 start-page: 397 year: 2013 end-page: 400 ident: bib13 article-title: Magnetic nanoparticle-based hyperthermia for cancer treatment publication-title: Rep. Practical Oncol. Radiother. – volume: 9 start-page: 1489 year: 2019 ident: bib30 article-title: Hyperthermia, cytotoxicity, and cellular uptake properties of manganese and zinc ferrite magnetic nanoparticles synthesized by a polyol-mediated process publication-title: Nanomaterials – start-page: 1 year: 2020 end-page: 7 ident: bib4 article-title: Preparation and characterizations of magnetic nanofluid of zinc ferrite for hyperthermia application publication-title: Nanomater. Energy – volume: 23 year: 2012 ident: bib25 article-title: On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field publication-title: Meas. Sci. Technol. – volume: 39 start-page: 7182 year: 2015 end-page: 7193 ident: bib19 article-title: Hyperthermia studies of ferrite synthesized in the presence of nanoparticles cotton publication-title: New J. Chem. – volume: 39 start-page: 5651 year: 2013 end-page: 5658 ident: bib17 article-title: Polyvinylpyrrolidone (PVP)/MnFe2O4 nanocomposite: sol–Gel autocombustion synthesis and its magnetic characterization publication-title: Ceram. Int. – volume: 1 start-page: 311 year: 2013 end-page: 337 ident: bib12 article-title: Effects of heat stress on postabsorptive metabolism and energetics publication-title: Annu. Rev. Anim. Biosci. – volume: 448 start-page: 346 year: 2014 end-page: 348 ident: bib8 article-title: Magneto-viscosity of MnZn-ferrite ferrofluid publication-title: Phys. B Condens. Matter – volume: 441 start-page: 310 year: 2017 end-page: 327 ident: bib22 article-title: Magnetic hyperthermia in magnetic nanoemulsions: effects of polydispersity, particle concentration and medium viscosity publication-title: J. Magn. Magn Mater. – volume: 2 start-page: 8390 year: 2014 end-page: 8398 ident: bib20 article-title: In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents publication-title: J. Mater. Chem. B – volume: 2 start-page: 8390 year: 2014 end-page: 8398 ident: bib23 article-title: In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents publication-title: J. Mater. Chem. B – volume: 42 start-page: 1249 year: 2013 end-page: 1258 ident: bib21 article-title: Induction heating studies of dextran coated MgFe 2 O 4 nanoparticles for magnetic hyperthermia publication-title: Dalton Trans. – volume: 9 start-page: 218 year: 2003 end-page: 223 ident: bib15 article-title: Antitumor effect of new local hyperthermia using dextran magnetite complex in hamster tongue carcinoma publication-title: Oral Dis. – volume: 43 start-page: 17343 year: 2014 end-page: 17351 ident: bib16 article-title: Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells publication-title: Dalton Trans. – volume: 143 start-page: 305 issue: 1 year: 2013 ident: 10.1016/j.ceramint.2020.07.029_bib29 article-title: Synthesis and characterizations of manganese ferrites for hyperthermia applications publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.08.066 – volume: 2 start-page: 120 issue: 1 year: 2014 ident: 10.1016/j.ceramint.2020.07.029_bib27 article-title: Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents publication-title: J. Mater. Chem. B doi: 10.1039/C3TB21146K – volume: 23 issue: 3 year: 2012 ident: 10.1016/j.ceramint.2020.07.029_bib25 article-title: On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/23/3/035701 – volume: 42 start-page: 1249 issue: 4 year: 2013 ident: 10.1016/j.ceramint.2020.07.029_bib21 article-title: Induction heating studies of dextran coated MgFe 2 O 4 nanoparticles for magnetic hyperthermia publication-title: Dalton Trans. doi: 10.1039/C2DT31114C – year: 2017 ident: 10.1016/j.ceramint.2020.07.029_bib1 doi: 10.1007/978-3-662-54357-3 – volume: 29 start-page: 715 issue: 8 year: 2013 ident: 10.1016/j.ceramint.2020.07.029_bib24 article-title: Physics of heat generation using magnetic nanoparticles for hyperthermia publication-title: Int. J. Hyperther. doi: 10.3109/02656736.2013.836758 – volume: 324 start-page: 903 issue: 6 year: 2012 ident: 10.1016/j.ceramint.2020.07.029_bib18 article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2011.10.017 – volume: 321 start-page: 3061 issue: 19 year: 2009 ident: 10.1016/j.ceramint.2020.07.029_bib2 article-title: Synthesis and characterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2009.05.023 – year: 2020 ident: 10.1016/j.ceramint.2020.07.029_bib11 article-title: Impact of crystallites on enhancement of bandgap of Mn1-xZnxFe2O4 (1≥ x≥ 0) nanospinels publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2020.137240 – volume: 43 start-page: 17343 issue: 46 year: 2014 ident: 10.1016/j.ceramint.2020.07.029_bib16 article-title: Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells publication-title: Dalton Trans. doi: 10.1039/C4DT02293A – volume: 2 start-page: 8390 issue: 47 year: 2014 ident: 10.1016/j.ceramint.2020.07.029_bib23 article-title: In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents publication-title: J. Mater. Chem. B doi: 10.1039/C4TB01017E – volume: 9 start-page: 1489 issue: 10 year: 2019 ident: 10.1016/j.ceramint.2020.07.029_bib30 article-title: Hyperthermia, cytotoxicity, and cellular uptake properties of manganese and zinc ferrite magnetic nanoparticles synthesized by a polyol-mediated process publication-title: Nanomaterials doi: 10.3390/nano9101489 – volume: 441 start-page: 310 year: 2017 ident: 10.1016/j.ceramint.2020.07.029_bib22 article-title: Magnetic hyperthermia in magnetic nanoemulsions: effects of polydispersity, particle concentration and medium viscosity publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2017.05.076 – volume: 26 start-page: 440 issue: 5 year: 2016 ident: 10.1016/j.ceramint.2020.07.029_bib5 article-title: Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2016.09.004 – volume: 288 start-page: 470 year: 2005 ident: 10.1016/j.ceramint.2020.07.029_bib7 article-title: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2004.09.138 – volume: 2 start-page: 8390 year: 2014 ident: 10.1016/j.ceramint.2020.07.029_bib20 article-title: In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents publication-title: J. Mater. Chem. B doi: 10.1039/C4TB01017E – volume: 5 start-page: 9090 year: 2015 ident: 10.1016/j.ceramint.2020.07.029_bib26 article-title: Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles publication-title: Sci. Rep. doi: 10.1038/srep09090 – volume: 39 start-page: 7182 issue: 9 year: 2015 ident: 10.1016/j.ceramint.2020.07.029_bib9 article-title: Hyperthermia studies of ferrite nanoparticles synthesized in the presence of cotton publication-title: New J. Chem. doi: 10.1039/C5NJ00009B – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ceramint.2020.07.029_bib14 article-title: Synthesis and characterization of monodispersed water dispersible Fe 3 O 4 nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition publication-title: Sci. Rep. doi: 10.1038/s41598-018-32934-w – volume: 745 year: 2020 ident: 10.1016/j.ceramint.2020.07.029_bib6 article-title: Impact of crystallites on enhancement of bandgap of Mn1-xZnxFe2O4 (1≥ x≥ 0) nanospinels publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2020.137240 – volume: 448 start-page: 346 year: 2014 ident: 10.1016/j.ceramint.2020.07.029_bib8 article-title: Magneto-viscosity of MnZn-ferrite ferrofluid publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2014.03.042 – volume: 18 start-page: 397 issue: 6 year: 2013 ident: 10.1016/j.ceramint.2020.07.029_bib13 article-title: Magnetic nanoparticle-based hyperthermia for cancer treatment publication-title: Rep. Practical Oncol. Radiother. doi: 10.1016/j.rpor.2013.09.011 – volume: 123 start-page: 174 year: 2017 ident: 10.1016/j.ceramint.2020.07.029_bib3 article-title: Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.03.036 – start-page: 1 year: 2020 ident: 10.1016/j.ceramint.2020.07.029_bib4 article-title: Preparation and characterizations of magnetic nanofluid of zinc ferrite for hyperthermia application publication-title: Nanomater. Energy – volume: 65 start-page: 732 issue: 5 year: 2013 ident: 10.1016/j.ceramint.2020.07.029_bib10 article-title: New forms of superparamagnetic nanoparticles for biomedical applications publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.10.008 – volume: 1 start-page: 311 issue: 1 year: 2013 ident: 10.1016/j.ceramint.2020.07.029_bib12 article-title: Effects of heat stress on postabsorptive metabolism and energetics publication-title: Annu. Rev. Anim. Biosci. doi: 10.1146/annurev-animal-031412-103644 – volume: 39 start-page: 5651 issue: 5 year: 2013 ident: 10.1016/j.ceramint.2020.07.029_bib17 article-title: Polyvinylpyrrolidone (PVP)/MnFe2O4 nanocomposite: sol–Gel autocombustion synthesis and its magnetic characterization publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.12.081 – volume: 9 start-page: 218 issue: 4 year: 2003 ident: 10.1016/j.ceramint.2020.07.029_bib15 article-title: Antitumor effect of new local hyperthermia using dextran magnetite complex in hamster tongue carcinoma publication-title: Oral Dis. doi: 10.1034/j.1601-0825.2003.02839.x – volume: 39 start-page: 7182 issue: 9 year: 2015 ident: 10.1016/j.ceramint.2020.07.029_bib19 article-title: Hyperthermia studies of ferrite synthesized in the presence of nanoparticles cotton publication-title: New J. Chem. doi: 10.1039/C5NJ00009B – volume: 409 start-page: 80 year: 2016 ident: 10.1016/j.ceramint.2020.07.029_bib28 article-title: Magnetic heating of silica-coated manganese ferrite nanoparticles publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2016.02.078 |
SSID | ssj0016940 |
Score | 2.6119313 |
Snippet | In the vision of hyperthermia application, high quality superparamagnetic MnFe2O4 nanoparticles (NPs) were synthesized via low cost and environment-friendly... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 25576 |
SubjectTerms | FC-ZFC Hyperthermia Induction heating Manganese ferrite SAR VSM |
Title | Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment |
URI | https://dx.doi.org/10.1016/j.ceramint.2020.07.029 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQXdqh6lN9Ig9dAyQ2iTMiVERbQQeKxBb52QZBQAHWrv3bPedVKlViqJTFkS-KfJfzd853dwg9uMo1AVPaUW3DHeqTtsOFEA44Rs4ZUaHmNnd4OPIHE_o87UxrqFfmwlhaZeH7c5-eeeviTqtYzdYqjltjCKg8xqiX9wAPbdxOaWCtvPlZ0TxcP6T5OUsAXz7M3skSnjWlTvkiTiyn0mtnRTwzqPnHBrWz6fRP0HGBFnE3f6FTVNPJGTraqSF4jr7Gem4c61JhiH-Kd-OlwevtSqe2uPeCvyc2WxEPk772XilOeALRckGKwwBccTXFzLexwh8Qn6YWHC5ijnf-cuNNxrNdY2nNJcUVUf0CTfqPb72BU3RXcCQJ2MYxAqCRYtKXinG4Qo8bogMbo0hlXM20jf08TX1NQGsdAciOe9z2wfUVIZJconqyTPQVwsQ1LuBItyOYooEnBRNCGglIIxTwdHqNOuWSRrIoPW47YMyjkmM2i0pVRFYVUTuIQBXXqFXJrfLiG3slwlJj0S8zimCH2CN78w_ZW3RoR3mS4h2qb9Ktvge0shGNzBwb6KD79DIYfQPL9e-f |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QOKgH4zO-3YPXCu32sT0SIikieFATbpt9ag1UUstv8G87S1vExISDSS99TNPsTGe_2Z35BqEbV7kmoko7qmO444ek43AhhAOOkXNKVKy5rR0ejcPkxb-fBJMG6tW1MDatsvL9pU9feuvqSrsazfY8TdtPEFB5lPpe2QM8hri9ZdmpgiZqdQfDZLzaTAhjv1xqieDnB4G1QuH3W6lzPkszm1bpdZY8nku0-ccctTbv9PfQbgUYcbf8pn3U0NkB2lmjETxEX096ahzrVeEU__B34w-DPxdznVt-7xl_zWzBIh5lfe09-jjjGQTMVV4cBuyKV4-Y6SJV-A1C1Nziw1nK8dpGNy6WqbafWFqLyfEqV_0IvfTvnnuJUzVYcCSJaOEYAehIURlKRTkcsccN0ZENU6Qyrqbahn-e9kNNQHGBAHDHPW5b4YaKEEmOUTP7yPQJwsQ1LkBJNxBU-ZEnBRVCGglgIxbwdv8UBfWQMlmxj9smGFNWp5m9s1oVzKqCdSIGqjhF7ZXcvOTf2CgR1xpjvyyJwSSxQfbsH7LXaCt5Hj2wh8F4eI627Z2yZvECNYt8oS8BvBTiqjLOb_kt8lA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-heating+evaluation+of+superparamagnetic+MnFe2O4+nanoparticles+for+magnetic+fluid+hyperthermia+application+towards+cancer+treatment&rft.jtitle=Ceramics+international&rft.au=Patade%2C+Supriya+R.&rft.au=Andhare%2C+Deepali+D.&rft.au=Somvanshi%2C+Sandeep+B.&rft.au=Jadhav%2C+Swapnil+A.&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=46&rft.issue=16&rft.spage=25576&rft.epage=25583&rft_id=info:doi/10.1016%2Fj.ceramint.2020.07.029&rft.externalDocID=S0272884220320290 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |