Mindlin second-gradient elastic properties from dilute two-phase Cauchy-elastic composites Part II: Higher-order constitutive properties and application cases
Starting from a Cauchy elastic composite with a dilute suspension of randomly distributed inclusions and characterized at first-order by a certain discrepancy tensor (see part I of the present article), it is shown that the equivalent second-gradient Mindlin elastic solid: (i) is positive definite o...
Saved in:
Published in | International journal of solids and structures Vol. 50; no. 24; pp. 4020 - 4029 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Starting from a Cauchy elastic composite with a dilute suspension of randomly distributed inclusions and characterized at first-order by a certain discrepancy tensor (see part I of the present article), it is shown that the equivalent second-gradient Mindlin elastic solid: (i) is positive definite only when the discrepancy tensor is negative defined; (ii) the non-local material symmetries are the same of the discrepancy tensor, and (iii) the non-local effective behaviour is affected by the shape of the RVE, which does not influence the first-order homogenized response. Furthermore, explicit derivations of non-local parameters from heterogeneous Cauchy elastic composites are obtained in the particular cases of: (a) circular cylindrical and spherical isotropic inclusions embedded in an isotropic matrix, (b) n-polygonal cylindrical voids in an isotropic matrix, and (c) circular cylindrical voids in an orthotropic matrix. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0020-7683 1879-2146 |
DOI: | 10.1016/j.ijsolstr.2013.08.016 |