Readback responses for complex recording media configurations

This paper describes a relatively simple approach to calculating the frequency response for a two-dimensional (2-D) magnetic recording system with a medium that can include an arbitrary number of layers. Each layer may have an arbitrary magnetization direction, anisotropic permeability, and exchange...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 40; no. 1; pp. 112 - 128
Main Authors Wilton, D.T., Wood, R.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.01.2004
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper describes a relatively simple approach to calculating the frequency response for a two-dimensional (2-D) magnetic recording system with a medium that can include an arbitrary number of layers. Each layer may have an arbitrary magnetization direction, anisotropic permeability, and exchange coupling. The approach relies on an initial transformation into the spatial frequency domain and then the use of transmission matrices to relate the fields in the different layers. The approach is general in that it provides a method for finding the field configuration for any set of 2-D magnetic sources embedded in a layered magnetic medium with a linear B--H relationship. Here, we focus on calculating the readback response for a variety of longitudinal and perpendicular recording configurations. Since the permeability may have any wavelength dependence, we can easily include the effect of exchange coupling in the underlayer.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2003.819475