Aberrant Insular Functional Network Integrity in Patients with Obstructive Sleep Apnea

Obstructive sleep apnea (OSA) is accompanied by tissue injury to the insular cortices, areas that regulate autonomic pain, dyspnea, and mood, all of which are affected in the syndrome. Presumably, the dysregulation of insular-related functions are mediated by aberrant functional connections with oth...

Full description

Saved in:
Bibliographic Details
Published inSleep (New York, N.Y.) Vol. 39; no. 5; pp. 989 - 1000
Main Authors Park, Bumhee, Palomares, Jose A, Woo, Mary A, Kang, Daniel W, Macey, Paul M, Yan-Go, Frisca L, Harper, Ronald M, Kumar, Rajesh
Format Journal Article
LanguageEnglish
Published United States Associated Professional Sleep Societies, LLC 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Obstructive sleep apnea (OSA) is accompanied by tissue injury to the insular cortices, areas that regulate autonomic pain, dyspnea, and mood, all of which are affected in the syndrome. Presumably, the dysregulation of insular-related functions are mediated by aberrant functional connections with other brain regions; however, the integrity of the functional connectivity (FC) to other sites is undescribed. Our aim was to examine resting-state FC of the insular cortices to other brain areas in OSA, relative to control subjects. We collected resting-state functional magnetic resonance imaging (MRI) data from 67 newly diagnosed, treatment-naïve OSA and 75 control subjects using a 3.0-Tesla MRI scanner. After standard processing, data were analyzed for the left and right insular FC. OSA subjects showed complex aberrant insular FC to several brain regions, including frontal, parietal, cingulate, temporal, limbic, basal ganglia, thalamus, occipital, cerebellar, and brainstem regions. Areas of altered FC in OSA showed linear relationships with magnitudes of sleep related and neuropsychologic-related variables, whereas control subjects showed no such relationships with those measures. Brain functional connections from insular sites to other brain regions in OSA subjects represent abnormal autonomic, affective, sensorimotor, and cognitive control networks that may affect both impaired parasympathetic and sympathetic interactions, as well as abnormal sensorimotor integration, affected in the condition. The functional changes likely result from the previously reported structural changes in OSA subjects, as demonstrated by diverse neuroimaging studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0161-8105
1550-9109
DOI:10.5665/sleep.5738