A synthetic biological quantum optical system
In strong plasmon-exciton coupling, a surface plasmon mode is coupled to an array of localized emitters to yield new hybrid light-matter states (plexcitons), whose properties may in principle be controlled via modification of the arrangement of emitters. We show that plasmon modes are strongly coupl...
Saved in:
Published in | Nanoscale Vol. 10; no. 27; pp. 13064 - 13073 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In strong plasmon-exciton coupling, a surface plasmon mode is coupled to an array of localized emitters to yield new hybrid light-matter states (plexcitons), whose properties may in principle be controlled via modification of the arrangement of emitters. We show that plasmon modes are strongly coupled to synthetic light-harvesting maquette proteins, and that the coupling can be controlled via alteration of the protein structure. For maquettes with a single chlorin binding site, the exciton energy (2.06 ± 0.07 eV) is close to the expected energy of the Qy transition. However, for maquettes containing two chlorin binding sites that are collinear in the field direction, an exciton energy of 2.20 ± 0.01 eV is obtained, intermediate between the energies of the Qx and Qy transitions of the chlorin. This observation is attributed to strong coupling of the LSPR to an H-dimer state not observed under weak coupling. |
---|---|
Bibliography: | SC0001035 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c8nr02144a |