Pre-design model for redox flow battery design
Owing to complex configurations and the multi-physics phenomenon in a Redox flow battery (RFB), designing an RFB flow frame through Computational fluid dynamics (CFD) or experimentally requires high design costs. As an alternative approach, a compartment model can be applied to the design of an opti...
Saved in:
Published in | Journal of mechanical science and technology Vol. 32; no. 3; pp. 1025 - 1032 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Society of Mechanical Engineers
01.03.2018
Springer Nature B.V 대한기계학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1738-494X 1976-3824 |
DOI | 10.1007/s12206-018-0203-z |
Cover
Loading…
Summary: | Owing to complex configurations and the multi-physics phenomenon in a Redox flow battery (RFB), designing an RFB flow frame through Computational fluid dynamics (CFD) or experimentally requires high design costs. As an alternative approach, a compartment model can be applied to the design of an optimal RFB flow frame. In this study, we developed a pre-design model to estimate the parameters related to the energy efficiency of an RFB. A key factor of the proposed model is applying a classical pipe network theory and an electric circuit analogy to an RFB flow frame and stack. The pre-design model enables an estimation of the total pressure drop, flow rate distribution, and shunt current at the RFB cells or stack. Model-based estimates show good agreement with CFD and experimental results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1738-494X 1976-3824 |
DOI: | 10.1007/s12206-018-0203-z |