On the enumerative nature of Gomory’s dual cutting plane method
For 30 years after their invention half a century ago, cutting planes for integer programs have been an object of theoretical investigations that had no apparent practical use. When they finally proved their practical usefulness in the late eighties, that happened in the framework of branch and boun...
Saved in:
Published in | Mathematical programming Vol. 125; no. 2; pp. 325 - 351 |
---|---|
Main Authors | , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.10.2010
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | For 30 years after their invention half a century ago, cutting planes for integer programs have been an object of theoretical investigations that had no apparent practical use. When they finally proved their practical usefulness in the late eighties, that happened in the framework of branch and bound procedures, as an auxiliary tool meant to reduce the number of enumerated nodes. To this day, pure cutting plane methods alone have poor convergence properties and are typically not used in practice. Our reason for studying them is our belief that these negative properties can be understood and thus remedied only based on a thorough investigation of such procedures in their pure form. In this paper, the second in a sequence, we address some important issues arising when designing a computationally sound pure cutting plane method. We analyze the dual cutting plane procedure proposed by Gomory in 1958, which is the first (and most famous) convergent cutting plane method for integer linear programming. We focus on the enumerative nature of this method as evidenced by the relative computational success of its lexicographic version (as documented in our previous paper on the subject), and we propose new versions of Gomory’s cutting plane procedure with an improved performance. In particular, the new versions are based on enumerative schemes that treat the objective function implicitly, and redefine the lexicographic order on the fly to mimic a sound branching strategy. Preliminary computational results are reported. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-010-0392-4 |