The vacuolization of macrophages induced by large amounts of inorganic nanoparticle uptake to enhance the immune response

Inorganic nanoparticles (NPs), particularly iron oxide (IO) and gold (Au) NPs, are widely used in a variety of biomedical applications, such as diagnosis and cancer therapy. As an important component of host defense in organisms, macrophages play a crucial role in responding to foreign substances, s...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 11; no. 47; pp. 22849 - 22859
Main Authors Cheng, Jin, Zhang, Qian, Fan, Sisi, Zhang, Amin, Liu, Bin, Hong, Yuping, Guo, Jinghui, Cui, Daxiang, Song, Jie
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inorganic nanoparticles (NPs), particularly iron oxide (IO) and gold (Au) NPs, are widely used in a variety of biomedical applications, such as diagnosis and cancer therapy. As an important component of host defense in organisms, macrophages play a crucial role in responding to foreign substances, such as nanoparticles. Thus, it is of utmost importance to understand the nanotoxicity effects on the immune system by investigating the influences of such nanoparticles. In this study, we found that macrophages can take up large amounts of amphiphilic polymer (PMA)-modified Au and IO NPs, which will induce macrophage cell vacuolization and enhance macrophage polarization. This mechanism is an essential part of the immune response in vivo . In addition, we report that smaller-sized nanoparticles ( ca. 4 nm) show more significant effects on the macrophage polarization and caused lysosomal damage compared to larger nanoparticles ( ca. 14 nm). Moreover, the amount of NP uptake in macrophages decreases upon trapping the PMA with PEG, resulting in reduced vacuolization and a reduced immune response. We hypothesize that vacuoles are formed in large amounts during NP uptake by macrophages, which enhances the immune response and induces macrophages toward M1 polarization. These findings are potentially useful for disease treatment and understanding the immune response when NPs are used in vitro and in vivo . The vacuolization induced by PMA-coated NPs enhanced the immune response towards M1 polarization and caused lysosomal damage.
AbstractList Inorganic nanoparticles (NPs), particularly iron oxide (IO) and gold (Au) NPs, are widely used in a variety of biomedical applications, such as diagnosis and cancer therapy. As an important component of host defense in organisms, macrophages play a crucial role in responding to foreign substances, such as nanoparticles. Thus, it is of utmost importance to understand the nanotoxicity effects on the immune system by investigating the influences of such nanoparticles. In this study, we found that macrophages can take up large amounts of amphiphilic polymer (PMA)-modified Au and IO NPs, which will induce macrophage cell vacuolization and enhance macrophage polarization. This mechanism is an essential part of the immune response in vivo. In addition, we report that smaller-sized nanoparticles (ca. 4 nm) show more significant effects on the macrophage polarization and caused lysosomal damage compared to larger nanoparticles (ca. 14 nm). Moreover, the amount of NP uptake in macrophages decreases upon trapping the PMA with PEG, resulting in reduced vacuolization and a reduced immune response. We hypothesize that vacuoles are formed in large amounts during NP uptake by macrophages, which enhances the immune response and induces macrophages toward M1 polarization. These findings are potentially useful for disease treatment and understanding the immune response when NPs are used in vitro and in vivo.
Inorganic nanoparticles (NPs), particularly iron oxide (IO) and gold (Au) NPs, are widely used in a variety of biomedical applications, such as diagnosis and cancer therapy. As an important component of host defense in organisms, macrophages play a crucial role in responding to foreign substances, such as nanoparticles. Thus, it is of utmost importance to understand the nanotoxicity effects on the immune system by investigating the influences of such nanoparticles. In this study, we found that macrophages can take up large amounts of amphiphilic polymer (PMA)-modified Au and IO NPs, which will induce macrophage cell vacuolization and enhance macrophage polarization. This mechanism is an essential part of the immune response in vivo . In addition, we report that smaller-sized nanoparticles ( ca. 4 nm) show more significant effects on the macrophage polarization and caused lysosomal damage compared to larger nanoparticles ( ca. 14 nm). Moreover, the amount of NP uptake in macrophages decreases upon trapping the PMA with PEG, resulting in reduced vacuolization and a reduced immune response. We hypothesize that vacuoles are formed in large amounts during NP uptake by macrophages, which enhances the immune response and induces macrophages toward M1 polarization. These findings are potentially useful for disease treatment and understanding the immune response when NPs are used in vitro and in vivo . The vacuolization induced by PMA-coated NPs enhanced the immune response towards M1 polarization and caused lysosomal damage.
Inorganic nanoparticles (NPs), particularly iron oxide (IO) and gold (Au) NPs, are widely used in a variety of biomedical applications, such as diagnosis and cancer therapy. As an important component of host defense in organisms, macrophages play a crucial role in responding to foreign substances, such as nanoparticles. Thus, it is of utmost importance to understand the nanotoxicity effects on the immune system by investigating the influences of such nanoparticles. In this study, we found that macrophages can take up large amounts of amphiphilic polymer (PMA)-modified Au and IO NPs, which will induce macrophage cell vacuolization and enhance macrophage polarization. This mechanism is an essential part of the immune response in vivo . In addition, we report that smaller-sized nanoparticles ( ca. 4 nm) show more significant effects on the macrophage polarization and caused lysosomal damage compared to larger nanoparticles ( ca. 14 nm). Moreover, the amount of NP uptake in macrophages decreases upon trapping the PMA with PEG, resulting in reduced vacuolization and a reduced immune response. We hypothesize that vacuoles are formed in large amounts during NP uptake by macrophages, which enhances the immune response and induces macrophages toward M1 polarization. These findings are potentially useful for disease treatment and understanding the immune response when NPs are used in vitro and in vivo .
Author Liu, Bin
Song, Jie
Zhang, Amin
Hong, Yuping
Fan, Sisi
Cui, Daxiang
Zhang, Qian
Cheng, Jin
Guo, Jinghui
AuthorAffiliation Department of gastroenterology
Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument
Shanghai Sixth People's Hospital
Shanghai JiaoTong University
Department of Instrument Science and Engineering
Institute of Nano Biomedicine and Engineering
School of Electronic Information and Electrical Engineering
Shanghai Jiao Tong University
AuthorAffiliation_xml – name: Department of Instrument Science and Engineering
– name: Shanghai Jiao Tong University
– name: School of Electronic Information and Electrical Engineering
– name: Institute of Nano Biomedicine and Engineering
– name: Department of gastroenterology
– name: Shanghai JiaoTong University
– name: Shanghai Sixth People's Hospital
– name: Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument
Author_xml – sequence: 1
  givenname: Jin
  surname: Cheng
  fullname: Cheng, Jin
– sequence: 2
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
– sequence: 3
  givenname: Sisi
  surname: Fan
  fullname: Fan, Sisi
– sequence: 4
  givenname: Amin
  surname: Zhang
  fullname: Zhang, Amin
– sequence: 5
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
– sequence: 6
  givenname: Yuping
  surname: Hong
  fullname: Hong, Yuping
– sequence: 7
  givenname: Jinghui
  surname: Guo
  fullname: Guo, Jinghui
– sequence: 8
  givenname: Daxiang
  surname: Cui
  fullname: Cui, Daxiang
– sequence: 9
  givenname: Jie
  surname: Song
  fullname: Song, Jie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31755508$$D View this record in MEDLINE/PubMed
BookMark eNpd0ctr3DAQB2BREppHe-m9RdBLKWyqhy1Lx7D0BSGBkp7NWB7vKrUlV7IC27--2m66hZ40oI-ZYX4X5MQHj4S84uyKM2k-WOMj00JxeEbOBavYSspGnBxrVZ2Ri5QeGFNGKvmcnEne1HXN9DnZ3W-RPoLNYXS_YHHB0zDQCWwM8xY2mKjzfbbY025HR4gbpDCF7Je0d86HuAHvLPXgwwxxcXZEmucFfiBdAkW_BW9LWaa4acoeacQ0B5_wBTkdYEz48um9JN8_fbxff1nd3H3-ur6-WVnZ6GVlalUJWfXY9x0g6KrTjagVmqpTCgelG8skaCl0xUxveQ2qVmIwAxeyqSsuL8m7Q985hp8Z09JOLlkcR_AYcmrF_hjG6MYU-vY_-hBy9GW7ogRXWgkti3p_UOVGKUUc2jm6CeKu5azdB9Kuze23P4FcF_zmqWXuJuyP9G8CBbw-gJjs8fdfovI3Pk-SWw
CitedBy_id crossref_primary_10_1016_j_bioadv_2023_213709
crossref_primary_10_1186_s12951_022_01616_1
crossref_primary_10_1016_j_jconrel_2020_12_004
crossref_primary_10_1016_j_ijbiomac_2022_12_154
crossref_primary_10_1016_j_addr_2023_114828
crossref_primary_10_1021_acsami_3c05555
crossref_primary_10_1016_j_nantod_2020_101023
crossref_primary_10_1016_j_tips_2022_01_009
crossref_primary_10_3389_fimmu_2021_693709
crossref_primary_10_1016_j_addr_2021_114022
crossref_primary_10_1016_j_ijpharm_2022_121795
crossref_primary_10_7554_eLife_72819
crossref_primary_10_1016_j_reactfunctpolym_2020_104542
crossref_primary_10_1016_j_ejphar_2020_173090
crossref_primary_10_1016_j_biomaterials_2021_120946
crossref_primary_10_1016_j_apmt_2024_102278
crossref_primary_10_1039_D0NR07865D
crossref_primary_10_1021_acs_est_3c01783
crossref_primary_10_1016_j_addr_2022_114613
crossref_primary_10_3390_molecules28031216
crossref_primary_10_1016_j_cbi_2021_109596
crossref_primary_10_1002_smll_202003646
crossref_primary_10_1016_j_biomaterials_2022_121365
crossref_primary_10_1016_j_addr_2021_114039
crossref_primary_10_1021_acsnano_3c05600
crossref_primary_10_1039_D0NR06945K
crossref_primary_10_3390_nano10050837
crossref_primary_10_1515_mr_2023_0002
crossref_primary_10_1002_adhm_202201178
Cites_doi 10.1021/nn202070n
10.2174/138920009790274577
10.1038/ncomms9692
10.1007/s11427-011-4215-5
10.1021/acsnano.8b06699
10.1021/acsnano.5b01685
10.2217/nnm.12.128
10.1016/j.marenvres.2011.10.003
10.1016/S0142-9612(96)00077-4
10.1161/CIRCRESAHA.107.170779
10.1002/smll.201403838
10.1093/hmg/ddq523
10.1002/adfm.201002516
10.1021/acs.chemmater.6b04738
10.1039/C7NR04914E
10.1038/am.2017.117
10.1021/acsnano.6b06245
10.1021/jacs.8b10904
10.1021/acsnano.8b04906
10.1016/j.jaad.2009.02.051
10.1021/acsnano.8b03900
10.1016/j.it.2015.05.007
10.1124/mol.109.059923
10.1016/j.biomaterials.2015.05.028
10.1038/nnano.2016.168
10.2147/NSA.S3788
10.1016/j.actbio.2017.12.034
10.1016/j.biomaterials.2017.11.038
10.1146/annurev.pharmtox.010909.105812
10.1002/smll.200700654
10.1016/j.biomaterials.2010.05.009
10.1038/nature01451
10.1016/j.febslet.2006.11.025
10.1002/adfm.201603651
10.1021/acsami.7b04288
10.1021/acs.bioconjchem.8b00349
10.1158/1078-0432.CCR-10-3420
10.1016/j.biomaterials.2018.03.048
10.7150/thno.33266
10.1021/acsnano.8b01086
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/c9nr08261a
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 22859
ExternalDocumentID 10_1039_C9NR08261A
31755508
c9nr08261a
Genre Journal Article
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
H13
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
-JG
0R~
AAJAE
AARTK
AAWGC
AAXHV
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CGR
CUY
CVF
ECM
EIF
GGIMP
HZ~
NPM
RAOCF
RVUXY
AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c378t-9564234deddbaea84b87256e94b66ef687c03a8328409dc15a6562f9f12375413
ISSN 2040-3364
IngestDate Fri Aug 16 22:16:39 EDT 2024
Thu Oct 10 15:18:46 EDT 2024
Fri Aug 23 00:27:46 EDT 2024
Sat Sep 28 08:28:09 EDT 2024
Sat Jan 08 03:52:57 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-9564234deddbaea84b87256e94b66ef687c03a8328409dc15a6562f9f12375413
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/c9nr08261a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4513-905X
0000-0003-0816-7131
PMID 31755508
PQID 2321686283
PQPubID 2047485
PageCount 11
ParticipantIDs crossref_primary_10_1039_C9NR08261A
rsc_primary_c9nr08261a
proquest_journals_2321686283
proquest_miscellaneous_2317599879
pubmed_primary_31755508
PublicationCentury 2000
PublicationDate 2019-12-21
PublicationDateYYYYMMDD 2019-12-21
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Newman (C9NR08261A-(cit8)/*[position()=1]) 2009; 61
Kim (C9NR08261A-(cit32)/*[position()=1]) 2016; 26
Yang (C9NR08261A-(cit15)/*[position()=1]) 2018; 156
Sperling (C9NR08261A-(cit22)/*[position()=1]) 2009; 10
Mirshafiee (C9NR08261A-(cit38)/*[position()=1]) 2018; 12
Mattheolabakis (C9NR08261A-(cit2)/*[position()=1]) 2012; 7
Su (C9NR08261A-(cit26)/*[position()=1]) 2015; 11
Tian (C9NR08261A-(cit7)/*[position()=1]) 2018; 12
Choi (C9NR08261A-(cit17)/*[position()=1]) 2011; 5
Falugi (C9NR08261A-(cit10)/*[position()=1]) 2012; 76
Wu (C9NR08261A-(cit34)/*[position()=1]) 2015; 9
Hrkach (C9NR08261A-(cit14)/*[position()=1]) 1997; 18
Zhang (C9NR08261A-(cit9)/*[position()=1]) 2018; 29
Shan (C9NR08261A-(cit18)/*[position()=1]) 2011; 21
Huehn (C9NR08261A-(cit31)/*[position()=1]) 2016; 29
Lipka (C9NR08261A-(cit16)/*[position()=1]) 2010; 31
Miller (C9NR08261A-(cit20)/*[position()=1]) 2015; 6
Zhang (C9NR08261A-(cit5)/*[position()=1]) 2017; 9
Dai (C9NR08261A-(cit23)/*[position()=1]) 2018; 12
Jain (C9NR08261A-(cit30)/*[position()=1]) 2015; 61
Xia (C9NR08261A-(cit1)/*[position()=1]) 2018; 170
Yang (C9NR08261A-(cit33)/*[position()=1]) 2006; 580
Zanganeh (C9NR08261A-(cit28)/*[position()=1]) 2016; 11
Xu (C9NR08261A-(cit13)/*[position()=1]) 2018; 12
Cankurtaran-Sayar (C9NR08261A-(cit36)/*[position()=1]) 2009; 76
Hughes (C9NR08261A-(cit41)/*[position()=1]) 2008; 102
Yin (C9NR08261A-(cit4)/*[position()=1]) 2017; 9
Xia (C9NR08261A-(cit6)/*[position()=1]) 2018; 68
Villalta (C9NR08261A-(cit40)/*[position()=1]) 2011; 20
Cai (C9NR08261A-(cit25)/*[position()=1]) 2008; 1
Daldrup-Link (C9NR08261A-(cit19)/*[position()=1]) 2011; 17
MacParland (C9NR08261A-(cit24)/*[position()=1]) 2017; 11
Conner (C9NR08261A-(cit35)/*[position()=1]) 2003; 422
Gu (C9NR08261A-(cit29)/*[position()=1]) 2019; 141
Zhang (C9NR08261A-(cit39)/*[position()=1]) 2017; 9
Lin (C9NR08261A-(cit11)/*[position()=1]) 2008; 4
Pranabesh (C9NR08261A-(cit12)/*[position()=1]) 2010; 9
Getts (C9NR08261A-(cit21)/*[position()=1]) 2015; 36
Zhang (C9NR08261A-(cit3)/*[position()=1]) 2019; 9
Laskin (C9NR08261A-(cit27)/*[position()=1]) 2011; 51
Gu (C9NR08261A-(cit37)/*[position()=1]) 2011; 54
References_xml – volume: 5
  start-page: 8591
  year: 2011
  ident: C9NR08261A-(cit17)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn202070n
  contributor:
    fullname: Choi
– volume: 10
  start-page: 895
  year: 2009
  ident: C9NR08261A-(cit22)/*[position()=1]
  publication-title: Curr. Drug Metab.
  doi: 10.2174/138920009790274577
  contributor:
    fullname: Sperling
– volume: 6
  start-page: 8692
  year: 2015
  ident: C9NR08261A-(cit20)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9692
  contributor:
    fullname: Miller
– volume: 54
  start-page: 793
  year: 2011
  ident: C9NR08261A-(cit37)/*[position()=1]
  publication-title: Sci. China: Life Sci.
  doi: 10.1007/s11427-011-4215-5
  contributor:
    fullname: Gu
– volume: 9
  start-page: 1116
  year: 2010
  ident: C9NR08261A-(cit12)/*[position()=1]
  publication-title: Macromol. Biosci.
  contributor:
    fullname: Pranabesh
– volume: 12
  start-page: 11541
  year: 2018
  ident: C9NR08261A-(cit7)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06699
  contributor:
    fullname: Tian
– volume: 9
  start-page: 7913
  year: 2015
  ident: C9NR08261A-(cit34)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01685
  contributor:
    fullname: Wu
– volume: 7
  start-page: 1577
  year: 2012
  ident: C9NR08261A-(cit2)/*[position()=1]
  publication-title: Nanomedicine
  doi: 10.2217/nnm.12.128
  contributor:
    fullname: Mattheolabakis
– volume: 76
  start-page: 114
  year: 2012
  ident: C9NR08261A-(cit10)/*[position()=1]
  publication-title: Mar. Environ. Res.
  doi: 10.1016/j.marenvres.2011.10.003
  contributor:
    fullname: Falugi
– volume: 18
  start-page: 27
  year: 1997
  ident: C9NR08261A-(cit14)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(96)00077-4
  contributor:
    fullname: Hrkach
– volume: 102
  start-page: 950
  year: 2008
  ident: C9NR08261A-(cit41)/*[position()=1]
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.107.170779
  contributor:
    fullname: Hughes
– volume: 11
  start-page: 4191
  year: 2015
  ident: C9NR08261A-(cit26)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201403838
  contributor:
    fullname: Su
– volume: 20
  start-page: 790
  year: 2011
  ident: C9NR08261A-(cit40)/*[position()=1]
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq523
  contributor:
    fullname: Villalta
– volume: 21
  start-page: 2488
  year: 2011
  ident: C9NR08261A-(cit18)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201002516
  contributor:
    fullname: Shan
– volume: 29
  start-page: 399
  year: 2016
  ident: C9NR08261A-(cit31)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04738
  contributor:
    fullname: Huehn
– volume: 9
  start-page: 13592
  year: 2017
  ident: C9NR08261A-(cit5)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR04914E
  contributor:
    fullname: Zhang
– volume: 9
  start-page: e408
  year: 2017
  ident: C9NR08261A-(cit4)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2017.117
  contributor:
    fullname: Yin
– volume: 11
  start-page: 2428
  year: 2017
  ident: C9NR08261A-(cit24)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06245
  contributor:
    fullname: MacParland
– volume: 141
  start-page: 6122
  year: 2019
  ident: C9NR08261A-(cit29)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10904
  contributor:
    fullname: Gu
– volume: 12
  start-page: 10104
  year: 2018
  ident: C9NR08261A-(cit13)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04906
  contributor:
    fullname: Xu
– volume: 61
  start-page: 685
  year: 2009
  ident: C9NR08261A-(cit8)/*[position()=1]
  publication-title: J. Am. Acad. Dermatol.
  doi: 10.1016/j.jaad.2009.02.051
  contributor:
    fullname: Newman
– volume: 12
  start-page: 8423
  year: 2018
  ident: C9NR08261A-(cit23)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03900
  contributor:
    fullname: Dai
– volume: 36
  start-page: 419
  year: 2015
  ident: C9NR08261A-(cit21)/*[position()=1]
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.05.007
  contributor:
    fullname: Getts
– volume: 76
  start-page: 1323
  year: 2009
  ident: C9NR08261A-(cit36)/*[position()=1]
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.109.059923
  contributor:
    fullname: Cankurtaran-Sayar
– volume: 61
  start-page: 162
  year: 2015
  ident: C9NR08261A-(cit30)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.05.028
  contributor:
    fullname: Jain
– volume: 11
  start-page: 986
  year: 2016
  ident: C9NR08261A-(cit28)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.168
  contributor:
    fullname: Zanganeh
– volume: 1
  start-page: 17
  year: 2008
  ident: C9NR08261A-(cit25)/*[position()=1]
  publication-title: Nanotechnol., Sci. Appl.
  doi: 10.2147/NSA.S3788
  contributor:
    fullname: Cai
– volume: 68
  start-page: 308
  year: 2018
  ident: C9NR08261A-(cit6)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.12.034
  contributor:
    fullname: Xia
– volume: 156
  start-page: 121
  year: 2018
  ident: C9NR08261A-(cit15)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.11.038
  contributor:
    fullname: Yang
– volume: 51
  start-page: 267
  year: 2011
  ident: C9NR08261A-(cit27)/*[position()=1]
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev.pharmtox.010909.105812
  contributor:
    fullname: Laskin
– volume: 4
  start-page: 334
  year: 2008
  ident: C9NR08261A-(cit11)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.200700654
  contributor:
    fullname: Lin
– volume: 31
  start-page: 6574
  year: 2010
  ident: C9NR08261A-(cit16)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.05.009
  contributor:
    fullname: Lipka
– volume: 422
  start-page: 37
  year: 2003
  ident: C9NR08261A-(cit35)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature01451
  contributor:
    fullname: Conner
– volume: 580
  start-page: 6679
  year: 2006
  ident: C9NR08261A-(cit33)/*[position()=1]
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2006.11.025
  contributor:
    fullname: Yang
– volume: 26
  start-page: 8072
  year: 2016
  ident: C9NR08261A-(cit32)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603651
  contributor:
    fullname: Kim
– volume: 9
  start-page: 17777
  year: 2017
  ident: C9NR08261A-(cit39)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04288
  contributor:
    fullname: Zhang
– volume: 29
  start-page: 2120
  issue: 6
  year: 2018
  ident: C9NR08261A-(cit9)/*[position()=1]
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.8b00349
  contributor:
    fullname: Zhang
– volume: 17
  start-page: 5695
  year: 2011
  ident: C9NR08261A-(cit19)/*[position()=1]
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-10-3420
  contributor:
    fullname: Daldrup-Link
– volume: 170
  start-page: 1
  year: 2018
  ident: C9NR08261A-(cit1)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.03.048
  contributor:
    fullname: Xia
– volume: 9
  start-page: 3443
  year: 2019
  ident: C9NR08261A-(cit3)/*[position()=1]
  publication-title: Theranostics
  doi: 10.7150/thno.33266
  contributor:
    fullname: Zhang
– volume: 12
  start-page: 3836
  year: 2018
  ident: C9NR08261A-(cit38)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01086
  contributor:
    fullname: Mirshafiee
SSID ssj0069363
Score 2.4830184
Snippet Inorganic nanoparticles (NPs), particularly iron oxide (IO) and gold (Au) NPs, are widely used in a variety of biomedical applications, such as diagnosis and...
SourceID proquest
crossref
pubmed
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 22849
SubjectTerms Animals
Biomedical materials
Cell Movement
Cell Proliferation
Cell Survival
Cytoplasm - metabolism
Ferric Compounds - chemistry
Gold
Gold - chemistry
Immune system
Immune System - drug effects
Inorganic Chemicals - chemistry
Iron oxides
Macrophage Activation
Macrophages
Macrophages - drug effects
Macrophages - immunology
Metal Nanoparticles - chemistry
Mice
Nanoparticles
Nanoparticles - chemistry
Particle Size
Polarization
Polymers - chemistry
RAW 264.7 Cells
Vacuoles - metabolism
Title The vacuolization of macrophages induced by large amounts of inorganic nanoparticle uptake to enhance the immune response
URI https://www.ncbi.nlm.nih.gov/pubmed/31755508
https://www.proquest.com/docview/2321686283
https://search.proquest.com/docview/2317599879
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZK5wIHxDZQGJAR3EYdmt0-lmrKCIYiUCt6i7yFRgzJqE2Q4Cfwq3leslQzQsAlqhzHqfy-2N97fgtCLyc65kAmoKZGk3AcEirGRMD3GHmCRSoUSmTa3vF-EZ-twrfraD0Y_Op5LdUVPxE_r40r-R-pQhvIVUfJ_oNk20GhAX6DfOEKEobrX8v4OxN1eeGiKc1pOdNVuTbsi3G1krWwHPNCu3zr2kK1c3zJC1vRSRwXrADV2Q5_XF9W7Kupp6GKjYkn0NQ012EkusKK8ajdcx-C9bncgaRbhMw2yrn55i3yWrv0xx4c5874mu_yK_2m39zDziLhmXIKfmeRsHaPxunUOJW40nXd2uZrR8YgsAnMT1S_LdlfnL0eCG1uzmaphY2V9vZtX6fiu3ZTmAQ6p6qgxRb4Tuz1tr7muH_xIZ2vzs_T5el6eQMd-AmNoiE6mL57_eZzs6_HNDB1-dq_3iS7Deirbux9enNFZwEGs20qyxgGs7yDbjvVA0-toO-igSruoVu9hJT3kS5jiPcQhcsM9xCFHaIw_4ENorBDlO7XIgr3EYUtonBVYocoDIjCFlG4QdQDtJqfLmdnY1ecYyyChFRj0KuBiYdSScmZYiTkJAH6rGjI41hlMUnEJGCwX2gLghRexEBz8DOaAVVKIqBOh2hYlIV6hLCEZ0hMJWivPJRCcup7WcZZ7HFClAhG6EUzp-mlzcGSGt-JgKYzuvhkZn46QkfNdKfuG92loC94OgaKwCDP29uARn0sxgpV1roPUGhKSUJH6KEVU_safQt0eDJChyC3trmT9-M_v_UJutl9IUdoWG1r9RRYbMWfOXj9Bnqaok4
link.rule.ids 315,786,790,27955,27956
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+vacuolization+of+macrophages+induced+by+large+amounts+of+inorganic+nanoparticle+uptake+to+enhance+the+immune+response&rft.jtitle=Nanoscale&rft.au=Cheng%2C+Jin&rft.au=Zhang%2C+Qian&rft.au=Fan%2C+Sisi&rft.au=Zhang%2C+Amin&rft.date=2019-12-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=11&rft.issue=47&rft.spage=22849&rft.epage=22859&rft_id=info:doi/10.1039%2Fc9nr08261a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon