The number of rational points of certain quartic diagonal hypersurfaces over finite fields
Let $p$ be an odd prime and let $\mathbb{F}_q$ be a finite field of characteristic $p$ with order $q=p^s$. For $f(x_1, \cdots, x_n)\in\mathbb{F}_q[x_1, ..., x_n]$, we denote by $N(f(x_1, \cdots, x_n)=0)$ the number of $\mathbb{F}_q$-rational points on the affine hypersurface $f(x_1, \cdots, x_n)=0$....
Saved in:
Published in | AIMS mathematics Vol. 5; no. 3; pp. 2710 - 2731 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let $p$ be an odd prime and let $\mathbb{F}_q$ be a finite field of characteristic $p$ with order $q=p^s$. For $f(x_1, \cdots, x_n)\in\mathbb{F}_q[x_1, ..., x_n]$, we denote by $N(f(x_1, \cdots, x_n)=0)$ the number of $\mathbb{F}_q$-rational points on the affine hypersurface $f(x_1, \cdots, x_n)=0$. In 1981, Myerson gave a formula for $N(x_1^4+\cdots+x_n^4=0)$. Recently, Zhao and Zhao obtained an explicit formula for $N(x_1^4+x_2^4=c)$ with $c\in\mathbb{F}_q^*:=\mathbb{F}_q\setminus \{0\}$. In this paper, by using the Gauss sum and Jacobi sum, we arrive at explicit formulas for $N(x_1^4+x_2^4+x_3^4=c)$ and $N(x_1^4+x_2^4+x_3^4+x_4^4=c)$ with $c\in\mathbb{F}_q^*$. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2020175 |