The Expression of Prostaglandin E Receptors EP2 and EP4 and Their Different Regulation by Lipopolysaccharide in C3H/HeN Peritoneal Macrophages
The expression and regulation of the PGE receptors, EP(2) and EP(4), both of which are coupled to the stimulation of adenylate cyclase, were examined in peritoneal resident macrophages from C3H/HeN mice. mRNA expression of EP(4) but not EP(2) was found in nonstimulated cells, but the latter was indu...
Saved in:
Published in | The Journal of immunology (1950) Vol. 166; no. 7; pp. 4689 - 4696 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Assoc Immnol
01.04.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The expression and regulation of the PGE receptors, EP(2) and EP(4), both of which are coupled to the stimulation of adenylate cyclase, were examined in peritoneal resident macrophages from C3H/HeN mice. mRNA expression of EP(4) but not EP(2) was found in nonstimulated cells, but the latter was induced by medium change alone, and this induction was augmented by LPS. mRNA expression of EP(4) was down-regulated by LPS but not by medium change. PGE(2) increased the cAMP content of both LPS-treated and nontreated cells. ONO-604, an EP(4) agonist, also increased cAMP content in nonstimulated cells and in cells treated with LPS for 3 h, but not for 6 h. Butaprost, an EP(2) agonist, was effective only in the cells treated with LPS for 6 h. The inhibitory effects of ONO-604 on TNF-alpha and IL-12 production were equipotent with PGE(2) at any time point, but the inhibitory effects of butaprost were only seen from 14 h after stimulation. PGE(2) or dibutyryl cAMP alone, but not butaprost, reduced EP(4) expression, and indomethacin reversed the LPS-induced down-regulation of EP(4), indicating that the down-regulation of EP(4) is mediated by LPS-induced PG synthesis and EP(4) activation. Indeed, when we used C3H/HeJ (LPS-hyporesponsive) macrophages, such reduction in EP(4) expression was found in the cells treated with PGE(2) alone, but not in LPS-treated cells. In contrast, up-regulation of EP(2) expression was again observed in LPS-treated C3H/HeJ macrophages. These results suggest that EP(4) is involved mainly in the inhibition of cytokine release, and that the gene expression of EP(2) and EP(4) is differentially regulated during macrophage activation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.166.7.4689 |