On the nonlinear system of fourth-order beam equations with integral boundary conditions
The purpose of this paper is to establish an existence theorem for a system of nonlinear fourth-order differential equations with two parameters <disp-formula> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{rcl} u^{(4)}+A(x)u& = &\lambda f...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 10; pp. 11467 - 11481 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The purpose of this paper is to establish an existence theorem for a system of nonlinear fourth-order differential equations with two parameters
<disp-formula> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{rcl} u^{(4)}+A(x)u& = &\lambda f(x, u, v, u'', v''), \ 0<x<1, \\ v^{(4)}+B(x)v& = &\mu g(x, u, v, u'', v''), \ 0<x<1 \end{array} \right. \end{eqnarray*} $\end{document} </tex-math></disp-formula>
subject to the coupled integral boundary conditions:
<disp-formula> <tex-math id="FE2"> \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{rcl} u(0) = u'(1) = u'''(1) = 0, \ u''(0)& = & \int_{0}^{1}p(x)v''(x)dx, \\ v(0) = v'(1) = v'''(1) = 0, \ v''(0)& = & \int_{0}^{1}q(x)u''(x)dx, \end{array} \right. \end{eqnarray*} $\end{document} </tex-math></disp-formula>
where $ A, \ B \in C[0, 1], $ $ p, q\in L^{1}[0, 1], $ $ \lambda > 0, \mu > 0 $ are two parameters and $ f, g: [0, 1]\times[0, \infty)\times[0, \infty)\times(-\infty, 0)\times(-\infty, 0) \rightarrow \mathbb{R} $ are two continuous functions satisfy the growth conditions. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2021664 |