Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology

A simple cosmological model with only six parameters (matter density, Omega sub(m)h super(2), baryon density, Omega sub(b)h super(2), Hubble constant, H sub(0), amplitude of fluctuations, sigma sub(8), optical depth, tau , and a slope for the scalar perturbation spectrum, n sub(s)) fits not only the...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal. Supplement series Vol. 170; no. 2; pp. 377 - 408
Main Authors Spergel, D. N, Bean, R, Doré, O, Nolta, M. R, Bennett, C. L, Dunkley, J, Hinshaw, G, Jarosik, N, Komatsu, E, Page, L, Peiris, H. V, Verde, L, Halpern, M, Hill, R. S, Kogut, A, Limon, M, Meyer, S. S, Odegard, N, Tucker, G. S, Weiland, J. L, Wollack, E, Wright, E. L
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.06.2007
Online AccessGet full text

Cover

Loading…
More Information
Summary:A simple cosmological model with only six parameters (matter density, Omega sub(m)h super(2), baryon density, Omega sub(b)h super(2), Hubble constant, H sub(0), amplitude of fluctuations, sigma sub(8), optical depth, tau , and a slope for the scalar perturbation spectrum, n sub(s)) fits not only the 3 year WMAP temperature and polarization data, but also small-scale CMB data, light element abundances, large-scale structure observations, and the supernova luminosity/distance relationship. Using WMAP data, only, the best-fit values for cosmological parameters for the power-law flat Lambda cold dark matter ( Lambda CDM) model are ( Omega sub(m)h super(2), Omega sub(b)h super(2),h,n sub(s), tau , sigma sub(8)) = (0.1277 super(+0.0080)-0.0079,0.02229 plus or minus 0.00073,0.732 super(+0.031)-0.032,0.958 plus or minus 0.016,0.089 plus or minus 0.030,0.761 super(+0.049)-0.048). The 3 year data dramatically shrink the allowed volume in mis six-dimensional parameter space. Assuming that the primordial fluctuations are adiabatic with a power-law spectrum, the WMAP data alone require dark matter and favor a spectral index that is significantly less than the Harrison-Zel'dovich-Peebles scale-invariant spectrum (n sub(s) = 1, r = 0). Adding additional data sets improves the constraints on these components and the spectral slope. For power-law models, WMAP data alone puts an improved upper limit on the tensor-to-scalar ratio, r sub(0.002) < 0.65 (95% CL) and the combination of WMAP and the lensing-normalized SDSS galaxy survey implies r sub(0.002) < 0.30 (95% CL). Models that suppress large-scale power through a running spectral index or a large-scale cutoff in the power spectrum are a better fit to the WMAP and small-scale CMB data than the power-law Lambda CDM model; however, the improvement in the fit to the WMAP data is only Delta chi super(2) = 3 for 1 extra degree of freedom. Models with a running-spectral index are consistent with a higher amplitude of gravity waves. In a flat universe, the combination of WMAP and the Supernova Legacy Survey (SNLS) data yields a significant constraint on the equation of state of the dark energy, w = -0.967 super(+0.073)-0.072. If we assume w = -1, then the deviations from the critical density, Omega sub(K) are small: the combination of WMAP and the SNLS data implies Omega sub(k) = -0.011 plus or minus 0.012. The combination of WMAP 3 year data plus the HST Key Project constraint on H sub(0) implies Omega sub(k) = -0.014 plus or minus 0.017 and Omega sub( Lambda ) = 0.716 plus or minus 0.055. Even if we do not include the prior that the universe is flat, by combining WMAP, large-scale structure, and supernova data, we can still put a strong constraint on the dark energy equation of state, w = -1.08 plus or minus 0.12. For a flat universe, the combination of WMAP and other astronomical data yield a constraint on the sum of the neutrino masses, capital sigma m sub( upsilon ) < 0.66 eV (95%CL). Consistent with the predictions of simple inflationary theories, we detect no significant deviations from Gaussianity in the CMB maps using Minkowski functionals, the bispectrum, trispectrum, and a new statistic designed to detect large-scale anisotropies in the fluctuations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0067-0049
1538-4365
DOI:10.1086/513700