A hearing aid on-chip system based on accuracy optimized front-and back-end blocks

A hearing aid on-chip system based on accuracy optimized front- and back-end blocks is presented for enhancing the signal processing accuracy of the hearing aid. Compared with the conventional system, the accuracy optimized system is characterized by the dual feedback network and the gain compensati...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductors Vol. 35; no. 3; pp. 137 - 145
Main Author 李凡阳 江浩
Format Journal Article
LanguageEnglish
Published 01.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A hearing aid on-chip system based on accuracy optimized front- and back-end blocks is presented for enhancing the signal processing accuracy of the hearing aid. Compared with the conventional system, the accuracy optimized system is characterized by the dual feedback network and the gain compensation technique used in the front-andback-endblocks,respectively,soastoalleviatethenonlinearitydistortioncausedbytheoutputswing.By usingthetechnique,theaccuracyofthewholehearingaidsystemcanbesignificantlyimproved.Theprototypechip has been designed with a 0.13 m standard CMOS process and tested with 1 V supply voltage. The measurement results show that, for driving a 16 loudspeaker with a normalized output level of 300 mV p-p, the total harmonic distortion reached about60 dB, achieving at least three times reduction compared to the previously reported works. In addition, the typical input referred noise is only about 5 υV rms.
Bibliography:11-5781/TN
A hearing aid on-chip system based on accuracy optimized front- and back-end blocks is presented for enhancing the signal processing accuracy of the hearing aid. Compared with the conventional system, the accuracy optimized system is characterized by the dual feedback network and the gain compensation technique used in the front-andback-endblocks,respectively,soastoalleviatethenonlinearitydistortioncausedbytheoutputswing.By usingthetechnique,theaccuracyofthewholehearingaidsystemcanbesignificantlyimproved.Theprototypechip has been designed with a 0.13 m standard CMOS process and tested with 1 V supply voltage. The measurement results show that, for driving a 16 loudspeaker with a normalized output level of 300 mV p-p, the total harmonic distortion reached about60 dB, achieving at least three times reduction compared to the previously reported works. In addition, the typical input referred noise is only about 5 υV rms.
front-end back-end pre-amplifier driving amplifier hearing aid
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-4926
DOI:10.1088/1674-4926/35/3/035006