Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages

Laboratory-scale electrochemical capacitor cells with bound activated carbon electrodes and acetonitrile-based electrolyte were aged at various elevated constant cell voltages between 2.75 V and 4.0 V. During the constant voltage tests, the cell capacitance as well as the capacitance and resistance...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 55; no. 15; pp. 4412 - 4420
Main Authors Ruch, P.W., Cericola, D., Foelske-Schmitz, A., Kötz, R., Wokaun, A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.06.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Laboratory-scale electrochemical capacitor cells with bound activated carbon electrodes and acetonitrile-based electrolyte were aged at various elevated constant cell voltages between 2.75 V and 4.0 V. During the constant voltage tests, the cell capacitance as well as the capacitance and resistance of each electrode was determined. Following each aging experiment, the cells were analyzed by means of electrochemical impedance spectroscopy, and the individual electrodes were characterized by gas adsorption and X-ray photoelectron spectroscopy. At cell voltages above 3.0 V, the positive electrode ages much faster than the negative. Both the capacitance loss and resistance increase of the cell could be totally attributed to the positive electrode. At cell voltages above 3.5 V also the negative electrode aged significantly. X-ray photoelectron spectroscopy indicated the presence of degradation products on the electrode surface with a much thicker layer on the positive electrode. Simultaneously, a significant decrease in electrode porosity could be detected by gas adsorption.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2010.02.064