Behaviour of voids in a shear field

When voids are present in a ductile material subject to a shear dominated stress state under low stress triaxiality the voids collapse to micro-cracks, which subsequently rotate and elongate in the shear field. In the present plane strain analyses for cylindrical voids a surface load normal to a pla...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fracture Vol. 158; no. 1; pp. 41 - 49
Main Author Tvergaard, Viggo
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.07.2009
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:When voids are present in a ductile material subject to a shear dominated stress state under low stress triaxiality the voids collapse to micro-cracks, which subsequently rotate and elongate in the shear field. In the present plane strain analyses for cylindrical voids a surface load normal to a plane connecting the ends of the micro-crack is used as an approximate representation of contact stresses during frictionless sliding. In a previous study of the same problem the author applied hydrostatic pressure inside the nearly closed micro-crack to approximate contact conditions. The transverse surface loads used in the present analyses avoid the tendency to unrealistically elongate the voids. It is found that even though the model applied here gives significantly later occurrence of a maximum overall shear stress than that found by using hydrostatic pressure, the present model does predict a maximum in all the cases analyzed and thus illustrates the micro-mechanism leading to failure of the material by localization of plastic flow.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0376-9429
1573-2673
DOI:10.1007/s10704-009-9364-1