The global distribution and climate resilience of marine heterotrophic prokaryotes
Heterotrophic Bacteria and Archaea (prokaryotes) are a major component of marine food webs and global biogeochemical cycles. Yet, there is limited understanding about how prokaryotes vary across global environmental gradients, and how their global abundance and metabolic activity (production and res...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 6943 - 11 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.08.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Heterotrophic Bacteria and Archaea (prokaryotes) are a major component of marine food webs and global biogeochemical cycles. Yet, there is limited understanding about how prokaryotes vary across global environmental gradients, and how their global abundance and metabolic activity (production and respiration) may be affected by climate change. Using global datasets of prokaryotic abundance, cell carbon and metabolic activity we reveal that mean prokaryotic biomass varies by just under 3-fold across the global surface ocean, while total prokaryotic metabolic activity increases by more than one order of magnitude from polar to tropical coastal and upwelling regions. Under climate change, global prokaryotic biomass in surface waters is projected to decline ~1.5% per °C of warming, while prokaryotic respiration will increase ~3.5% ( ~ 0.85 Pg C yr
−1
). The rate of prokaryotic biomass decline is one-third that of zooplankton and fish, while the rate of increase in prokaryotic respiration is double. This suggests that future, warmer oceans could be increasingly dominated by prokaryotes, diverting a growing proportion of primary production into microbial food webs and away from higher trophic levels as well as reducing the capacity of the deep ocean to sequester carbon, all else being equal.
This study uses global datasets of marine prokaryotes to reveal that prokaryotic biomass varies by just under 3-fold across the global surface ocean, while metabolic activity increases by more than one order of magnitude from polar to tropical coastal and upwelling regions. The findings also suggest that shifts under climate change could lead to an increasingly microbial-dominated ocean. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-50635-z |