Involution on prime rings with endomorphisms
Let $\mathcal{R}$ be a prime ring with involution $'*'$ and $\psi: \mathcal{R} \rightarrow \mathcal{R}$ be an endomorphism on $\mathcal{R}$. In this article, we study the action of involution $'*',$ and the effect of endomorphism $\psi$ satisfying $[\psi(x),\psi(x^*)]-[x,x^*]\in...
Saved in:
Published in | AIMS mathematics Vol. 5; no. 4; pp. 3274 - 3283 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let $\mathcal{R}$ be a prime ring with involution $'*'$ and $\psi: \mathcal{R} \rightarrow \mathcal{R}$ be an endomorphism on $\mathcal{R}$. In this article, we study the action of involution $'*',$ and the effect of endomorphism $\psi$ satisfying $[\psi(x),\psi(x^*)]-[x,x^*]\in \mathcal{Z}(\mathcal{R})$ for all $x\in \mathcal{R}$. In particular, we prove that any centralizing involution on prime rings with involution of characteristic different from two is of the first kind or $\mathcal{R}$ satisfies $s_4$, the standard polynomial identity in four variables. Further, we establish that if a prime ring $\mathcal{R}$ with involution of characteristic different from two admits a non-trivial endomorphism $\psi$ such that $[\psi(x),\psi(x^*)]-[x,x^*]\in \mathcal{Z}(\mathcal{R})$ for all $x\in \mathcal{R}$, then the involution is of the first kind or $\mathcal{R}$ satisfies $s_4$ and $[\psi(x), x]=0$ for all $x\in \mathcal{R}$. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2020210 |