Modulation of dlPFC function and decision-making capacity by repetitive transcranial magnetic stimulation in methamphetamine use disorder

This study explores the impact of repetitive transcranial magnetic stimulation (rTMS) on decision-making capabilities in individuals with methamphetamine use disorder (MUD), alongside potential underlying psychological mechanisms. Employing the Iowa Gambling Task (IGT) and computational modeling tec...

Full description

Saved in:
Bibliographic Details
Published inTranslational psychiatry Vol. 14; no. 1; pp. 280 - 9
Main Authors Liu, Qingming, Cui, Huimin, Li, Jiali, Shen, Ying, Zhang, Lei, Zheng, Hui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.07.2024
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study explores the impact of repetitive transcranial magnetic stimulation (rTMS) on decision-making capabilities in individuals with methamphetamine use disorder (MUD), alongside potential underlying psychological mechanisms. Employing the Iowa Gambling Task (IGT) and computational modeling techniques, we assessed the decision-making processes of 50 male MUD participants (24 underwent rTMS treatment, 26 received no treatment) and 39 healthy controls (HC). We compared pre- and post-rTMS treatment alterations in the left dorsolateral prefrontal cortex (dlPFC). Results revealed inferior performance in the IGT among the MUD group, characterized by aberrant model parameters in the Value-Plus-Perseverance (VPP) model, including heightened learning rate, outcome sensitivity, and reinforcement learning weight, alongside diminished response consistency and loss aversion. RTMS treatment demonstrated efficacy in reducing craving scores, enhancing decision-making abilities, and partially restoring normalcy to certain model parameters in the MUD cohort. Nonetheless, no linear relationship between changes in model parameters and craving was observed. These findings lend support to the somatic marker hypothesis, implicating the dlPFC in the decision-making deficits observed in MUD, with rTMS potentially ameliorating these deficits by modulating the function of these brain regions. This study not only offers novel insights and methodologies for MUD rehabilitation but also underscores the necessity for further research to corroborate and refine these findings. Trial Registration www.chictr.org.cn Identifier: No. ChiCTR17013610.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2158-3188
2158-3188
DOI:10.1038/s41398-024-03000-z