Primed polymorphonuclear leukocytes from hemodialysis patients enhance monocyte transendothelial migration

Increased counts and priming of peripheral polymorphonuclear leukocytes (PMNLs) are associated with future or ongoing atherosclerosis; however, the role of PMNLs in enhancing monocyte transendothelial migration is still unclear. Our aims were to examine endothelial and monocyte activation, transmigr...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Heart and circulatory physiology Vol. 313; no. 5; pp. H974 - H987
Main Authors Kliger, Eynav, Kristal, Batya, Shapiro, Galina, Chezar, Judith, Sela, Shifra
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Increased counts and priming of peripheral polymorphonuclear leukocytes (PMNLs) are associated with future or ongoing atherosclerosis; however, the role of PMNLs in enhancing monocyte transendothelial migration is still unclear. Our aims were to examine endothelial and monocyte activation, transmigration, and posttransmigration activation induced ex vivo by in vivo primed PMNLs and the effect of antioxidants on the activation. A unique ex vivo coculture system of three cell types was developed in this study, enabling interactions among the following: primary human umbilical vein endothelial cells (HUVECs), monocytes (THP-1 cell line), and in vivo primed PMNLs from hemodialysis (HD) patients and healthy control (HC) subjects. The interactions among these cells were examined, and an intervention with superoxide dismutase and catalase was performed. Preexposed HUVECs to HD/HC PMNLs showed a significant monocyte transmigration yield, 120–170% above HCs. Monocyte exposure to HD PMNLs induced pre- and posttransmigration activation. When the three cell types were cocultivated at the same time, monocyte chemoattractant protein-1 protein levels released from HUVECs, and activation markers on HUVECs [CD54 and chemokine (C-X3-C motif) ligand 1] and monocytes [chemokine (C-X3-C) receptor 1 and chemokine (C-C motif) receptor 2] were increased. Monocyte transmigration yield decreased to 70% (compared with HC subjects) due to adherence and accumulation of monocytes to HUVECs. When superoxide dismutase and catalase were used, reduced HUVEC and monocyte activation markers brought the transmigration yields to control levels and abolished accumulation of monocytes, emphasizing the role of superoxide in this process. We conclude that peripheral primed PMNLs play a pivotal role in enhancing monocyte transendotelial migration, the hallmark of the atherosclerotic process. Primed PMNLs can be used as a mediator and a biomarker of atherosclerosis even before plaque formation. NEW & NOTEWORTHY Primed polymorphonuclear leukocytes are key mediators in monocyte transendothelial migration, a new understanding of the initiation of endothelial dysfunction and monocyte activation, transmigration, and accumulation in the subendothelial layer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0363-6135
1522-1539
1522-1539
DOI:10.1152/ajpheart.00122.2017