Geometric properties of harmonic functions associated with the symmetric conjecture points and exponential function
In this paper, some classes of univalent harmonic functions are introduced by subordination, where the analytic parts of which are exponential starlike (or convex) functions with respect to the symmetric conjecture points. According to the relationships of the analytic part and the co-analytic part,...
Saved in:
Published in | AIMS mathematics Vol. 5; no. 6; pp. 6800 - 6816 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2020437 |
Cover
Loading…
Summary: | In this paper, some classes of univalent harmonic functions are introduced by subordination, where the analytic parts of which are exponential starlike (or convex) functions with respect to the symmetric conjecture points. According to the relationships of the analytic part and the co-analytic part, the geometric properties, such as coefficient estimates, distortion theorems, integral expressions, estimates and growth conditions and covering theorem, of the classes are obtained. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2020437 |