Influence of steel and PP fibers on mechanical and microstructural properties of fly ash-GGBFS based geopolymer composites
In this study, experimental investigations were carried out to estimate the mechanical and microstructural properties of polypropylene (PP) and steel fiber reinforced geopolymer mortar. Two industrial by-products are used as binders to produce the geopolymer composites, i.e., fly ash (FA) and ground...
Saved in:
Published in | Ceramics international Vol. 48; no. 5; pp. 6808 - 6818 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, experimental investigations were carried out to estimate the mechanical and microstructural properties of polypropylene (PP) and steel fiber reinforced geopolymer mortar. Two industrial by-products are used as binders to produce the geopolymer composites, i.e., fly ash (FA) and ground granulated blast furnace slag (GGBFS). Different percentages of PP and steel fibers are used in geopolymer mortars to find the mechanical properties such as compressive, splitting tensile and flexural strengths were investigated to understand the strength behavior. However, the compressive elastic modulus values were estimated through the proposed equation based on the compressive strength of the fiber reinforced geopolymer composite samples. Moreover, to understand the geopolymeic reaction, microstructural studies, i.e., scanning electron microscopy (SEM), were conducted. The experimental results revealed that the addition of PP fibers up to 2.0% (volume fraction) enhanced the flexural properties of geopolymer mortar samples. The compressive strength of the steel fiber-reinforced geopolymer composite reached a maximum of 2.5% volume fraction, being a 13.26% improvement over the control mix. The flexural toughness index of the PP and steel fiber reinforced composites improved with increasing the fraction. However, steel fiber reinforced geopolymer samples are shown better flexural toughness compared to PP fibers. The SEM analysis of the geopolymer control mix achieved a good degree of geopolymerization and both the fibers yielded a considerable interfacial bonding with the geopolymer paste. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2021.11.232 |