Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation

Energy generation by wind and solar farms could reduce carbon emissions and thus mitigate anthropogenic climate change. But is this its only benefit? Li et al. conducted experiments using a climate model to show that the installation of large-scale wind and solar power generation facilities in the S...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 361; no. 6406; pp. 1019 - 1022
Main Authors Li, Yan, Kalnay, Eugenia, Motesharrei, Safa, Rivas, Jorge, Kucharski, Fred, Kirk-Davidoff, Daniel, Bach, Eviatar, Zeng, Ning
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 07.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Energy generation by wind and solar farms could reduce carbon emissions and thus mitigate anthropogenic climate change. But is this its only benefit? Li et al. conducted experiments using a climate model to show that the installation of large-scale wind and solar power generation facilities in the Sahara could cause more local rainfall, particularly in the neighboring Sahel region. This effect, caused by a combination of increased surface drag and reduced albedo, could increase coverage by vegetation, creating a positive feedback that would further increase rainfall. Science , this issue p. 1019 Large wind and solar farms could increase local rainfall and vegetation cover in the Sahara. Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo–precipitation–vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts.
AbstractList Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo-precipitation-vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts.
Energy generation by wind and solar farms could reduce carbon emissions and thus mitigate anthropogenic climate change. But is this its only benefit? Li et al. conducted experiments using a climate model to show that the installation of large-scale wind and solar power generation facilities in the Sahara could cause more local rainfall, particularly in the neighboring Sahel region. This effect, caused by a combination of increased surface drag and reduced albedo, could increase coverage by vegetation, creating a positive feedback that would further increase rainfall. Science , this issue p. 1019 Large wind and solar farms could increase local rainfall and vegetation cover in the Sahara. Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo–precipitation–vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts.
More energy, more rainEnergy generation by wind and solar farms could reduce carbon emissions and thus mitigate anthropogenic climate change. But is this its only benefit? Li et al. conducted experiments using a climate model to show that the installation of large-scale wind and solar power generation facilities in the Sahara could cause more local rainfall, particularly in the neighboring Sahel region. This effect, caused by a combination of increased surface drag and reduced albedo, could increase coverage by vegetation, creating a positive feedback that would further increase rainfall.Science, this issue p. 1019Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo–precipitation–vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts.
Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo-precipitation-vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts.Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo-precipitation-vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts.
Author Kalnay, Eugenia
Rivas, Jorge
Kirk-Davidoff, Daniel
Bach, Eviatar
Li, Yan
Kucharski, Fred
Zeng, Ning
Motesharrei, Safa
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0002-6336-0981
  surname: Li
  fullname: Li, Yan
  organization: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA., Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA., State Key Laboratory of Earth Surface Processes and Resources Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 2
  givenname: Eugenia
  orcidid: 0000-0002-9984-9906
  surname: Kalnay
  fullname: Kalnay, Eugenia
  organization: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA., Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
– sequence: 3
  givenname: Safa
  orcidid: 0000-0001-5905-3842
  surname: Motesharrei
  fullname: Motesharrei, Safa
  organization: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA., Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA., Department of Physics, University of Maryland, College Park, MD 20742, USA
– sequence: 4
  givenname: Jorge
  surname: Rivas
  fullname: Rivas, Jorge
– sequence: 5
  givenname: Fred
  surname: Kucharski
  fullname: Kucharski, Fred
  organization: Earth System Physics Section, Abdus Salam International Centre for Theoretical Physics, Trieste I-34100, Italy
– sequence: 6
  givenname: Daniel
  orcidid: 0000-0001-9805-2674
  surname: Kirk-Davidoff
  fullname: Kirk-Davidoff, Daniel
  organization: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA
– sequence: 7
  givenname: Eviatar
  orcidid: 0000-0002-9725-0203
  surname: Bach
  fullname: Bach, Eviatar
  organization: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA., Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
– sequence: 8
  givenname: Ning
  orcidid: 0000-0002-7489-7629
  surname: Zeng
  fullname: Zeng, Ning
  organization: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA., LASG, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30190404$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rGzEQxUVwiJ2Pc29F0Esu64wka7U6FtO0hUAPyV2Mpdl4w-7KldYN_e8jY-cSyEEM0vzeoHnvks3GOBJjXwQshZD1XfYdjZ6WiEnX0p6xhQCrKytBzdgCQNVVA0bP2WXOLwClZ9UFmysQFlawWjC37rsBJ-JDDNTzvI2vmfeYnqnKHnvir90YOJaTY3nmLaYh827k05b4I24xYbn5RJiJJyyNA_uPnmnCqYvjNTtvsc90c6pX7On-x9P6V_Xw5-fv9feHyivTTJWwQWwMoqzBKC1NWKkWBFLjWwDUwYY62FZpI3W9kWiM2DQIOuiWVgGUumK3x7G7FP_uKU9u6LKnvseR4j47KUBIoxXYgn77gL7EfRrL5w4UKAtaNYX6eqL2m4GC26ViU_rv3p0rgD4CPsWcE7XOd8eVp2JD7wS4Q0LulJA7JVR0dx9076M_U7wBC7iVZg
CitedBy_id crossref_primary_10_1051_e3sconf_202452002013
crossref_primary_10_1016_j_agrformet_2021_108607
crossref_primary_10_1007_s00382_019_05002_w
crossref_primary_10_1029_2020GL090789
crossref_primary_10_1175_JCLI_D_20_0628_1
crossref_primary_10_3390_en16124559
crossref_primary_10_5194_esd_15_109_2024
crossref_primary_10_1016_j_jhydrol_2024_132183
crossref_primary_10_1029_2019JD031972
crossref_primary_10_3389_fevo_2023_1151182
crossref_primary_10_1016_j_jclepro_2021_129010
crossref_primary_10_1002_ldr_4783
crossref_primary_10_1038_s41612_024_00606_4
crossref_primary_10_3389_fenvs_2024_1355508
crossref_primary_10_5194_npg_29_133_2022
crossref_primary_10_1017_jfm_2022_732
crossref_primary_10_1016_j_jenvman_2022_116338
crossref_primary_10_1038_s41598_023_49650_9
crossref_primary_10_1016_j_geosus_2024_01_007
crossref_primary_10_1038_s41598_019_57371_1
crossref_primary_10_1016_j_buildenv_2021_107628
crossref_primary_10_1016_j_jclepro_2020_121376
crossref_primary_10_1093_pnasnexus_pgad097
crossref_primary_10_1002_vzj2_70002
crossref_primary_10_1038_s43247_024_01619_w
crossref_primary_10_1088_2515_7620_ac40f1
crossref_primary_10_3390_su14127493
crossref_primary_10_2139_ssrn_3769155
crossref_primary_10_1029_2023JD040271
crossref_primary_10_3389_fenrg_2020_567986
crossref_primary_10_1016_j_egyr_2022_03_039
crossref_primary_10_1016_j_renene_2022_01_118
crossref_primary_10_3389_fmicb_2024_1494681
crossref_primary_10_1016_j_jclepro_2023_139958
crossref_primary_10_1029_2023GL105150
crossref_primary_10_1016_j_xinn_2024_100734
crossref_primary_10_1088_1748_9326_ada302
crossref_primary_10_59717_j_xinn_energy_2024_100046
crossref_primary_10_1016_j_ecofro_2024_11_005
crossref_primary_10_1016_j_energy_2021_121519
crossref_primary_10_1016_j_jenvman_2023_118304
crossref_primary_10_1007_s00704_022_04337_5
crossref_primary_10_1038_s41598_023_36314_x
crossref_primary_10_1016_j_jag_2024_104233
crossref_primary_10_3390_challe13010022
crossref_primary_10_1007_s11430_023_1363_3
crossref_primary_10_1093_nsr_nwac242
crossref_primary_10_1016_j_scitotenv_2023_167203
crossref_primary_10_1016_j_solener_2022_09_023
crossref_primary_10_1016_j_renene_2023_119551
crossref_primary_10_1016_j_apenergy_2023_120789
crossref_primary_10_1080_17538947_2023_2224586
crossref_primary_10_1007_s13351_021_1099_6
crossref_primary_10_1016_j_catena_2024_108368
crossref_primary_10_1038_s41558_023_01692_7
crossref_primary_10_1088_1748_9326_abbdea
crossref_primary_10_1016_j_accre_2024_07_007
crossref_primary_10_1007_s43995_025_00102_7
crossref_primary_10_1016_j_ocecoaman_2021_105611
crossref_primary_10_3390_j3030027
crossref_primary_10_1016_j_rset_2021_100008
crossref_primary_10_1016_j_xcrp_2023_101518
crossref_primary_10_1038_s43247_023_01117_5
crossref_primary_10_1186_s12862_025_02350_6
crossref_primary_10_3390_conservation5010004
crossref_primary_10_1039_C8EW00571K
crossref_primary_10_1016_j_scitotenv_2021_149946
crossref_primary_10_3390_rs15010228
crossref_primary_10_1016_j_uclim_2023_101668
crossref_primary_10_1016_j_scitotenv_2021_146707
crossref_primary_10_3390_su15065496
crossref_primary_10_1016_j_solener_2024_112446
crossref_primary_10_5194_gmd_16_1083_2023
crossref_primary_10_3390_su16229922
crossref_primary_10_3390_su17020634
crossref_primary_10_3389_fmicb_2022_1065899
crossref_primary_10_3390_rs16101711
crossref_primary_10_1088_2515_7620_ac9bd7
crossref_primary_10_1016_j_geosus_2020_02_003
crossref_primary_10_1088_1748_9326_ac49ba
crossref_primary_10_1007_s00704_025_05430_1
crossref_primary_10_1016_j_solener_2023_112198
crossref_primary_10_3390_su12083403
crossref_primary_10_1088_1748_9326_acf7d8
crossref_primary_10_1073_pnas_1909269116
crossref_primary_10_1016_j_ejrh_2024_101941
crossref_primary_10_3390_land12112049
crossref_primary_10_1029_2023GL104137
crossref_primary_10_1016_j_rser_2021_111021
crossref_primary_10_1016_j_agrformet_2021_108772
crossref_primary_10_1089_ees_2021_0014
crossref_primary_10_1002_ldr_3408
crossref_primary_10_3390_rs12111825
crossref_primary_10_1146_annurev_earth_053018_060428
crossref_primary_10_1360_SSTe_2023_0307
crossref_primary_10_3390_plants13111491
crossref_primary_10_1016_j_joule_2024_02_018
crossref_primary_10_1080_02522667_2022_2042096
crossref_primary_10_1029_2024GL109296
crossref_primary_10_1007_s10668_021_01424_x
crossref_primary_10_1038_s41893_020_0574_x
crossref_primary_10_1038_s41598_019_42569_0
crossref_primary_10_1016_j_jqsrt_2025_109417
crossref_primary_10_1029_2024EF004427
crossref_primary_10_1108_SRT_05_2022_0012
crossref_primary_10_1016_j_scitotenv_2024_176911
crossref_primary_10_1016_j_egyr_2023_08_064
crossref_primary_10_1016_j_resconrec_2025_108127
crossref_primary_10_3390_rs16224266
crossref_primary_10_3390_rs17010010
crossref_primary_10_1016_j_oneear_2020_03_002
crossref_primary_10_1016_j_energy_2024_132936
crossref_primary_10_5194_essd_14_3743_2022
crossref_primary_10_1016_j_atmosenv_2022_119074
crossref_primary_10_1175_JHM_D_20_0266_1
crossref_primary_10_1016_j_renene_2024_120461
crossref_primary_10_1007_s11769_019_1038_y
crossref_primary_10_1016_j_renene_2024_121546
crossref_primary_10_34133_ehs_0014
crossref_primary_10_5194_esd_13_219_2022
crossref_primary_10_1002_ldr_5372
crossref_primary_10_1063_5_0051158
crossref_primary_10_5814_j_issn_1674_764x_2024_01_013
crossref_primary_10_1016_j_seta_2023_103120
crossref_primary_10_3389_fmicb_2023_1190650
crossref_primary_10_1016_j_seta_2024_104075
crossref_primary_10_1002_adfm_202212207
crossref_primary_10_1007_s11356_020_11742_8
crossref_primary_10_1038_s41893_020_0562_1
crossref_primary_10_1016_j_renene_2021_10_054
crossref_primary_10_1063_5_0047077
crossref_primary_10_1093_pnasnexus_pgad352
crossref_primary_10_1021_acs_energyfuels_0c02595
crossref_primary_10_1016_j_renene_2023_05_068
crossref_primary_10_1051_e3sconf_202561702005
crossref_primary_10_1016_j_renene_2021_03_148
crossref_primary_10_1007_s00382_024_07262_7
crossref_primary_10_3389_fenvs_2024_1406546
crossref_primary_10_1016_j_geomorph_2020_107165
crossref_primary_10_59231_SARI7636
crossref_primary_10_1016_j_renene_2021_02_076
Cites_doi 10.26889/9781784671112
10.1073/pnas.1510028112
10.1007/s00382-016-3224-2
10.1073/pnas.1000493107
10.1126/science.286.5444.1537
10.1007/s00382-008-0451-1
10.1029/1999GL011089
10.1080/07900627.2015.1012660
10.1088/1748-9326/6/3/034001
10.1007/978-1-4020-8494-2_19
10.5194/acp-10-2053-2010
10.1007/BF02915395
10.1029/2004JD004763
10.1073/pnas.1610359113
10.1029/1998JD200006
10.1038/nature16542
10.1002/qj.49710142802
10.1175/1520-0469(2000)057<1767:AQETCM>2.0.CO;2
10.5194/esd-7-167-2016
10.1038/nclimate2921
10.1073/pnas.0904101106
10.1029/2004GB002273
10.1038/nclimate2269
10.1007/s00382-012-1397-x
10.1175/JCLI-D-14-00245.1
10.1073/pnas.1408251112
10.1038/nclimate1683
10.1038/nclimate1505
10.1016/j.solener.2012.09.014
10.5194/esd-2-1-2011
10.1038/ngeo3031
10.1007/s00382-002-0268-2
10.1007/BF00137034
10.1126/science.aad1920
10.1038/nclimate2935
10.1038/nature14016
10.1073/pnas.1611845114
10.1029/2009GL039699
10.1038/nclimate2843
10.1126/science.1164363
10.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2
10.1038/nclimate2370
10.1016/j.rser.2013.08.041
10.1073/pnas.0406930101
10.1175/BAMS-D-11-00238.1
10.1007/s41825-017-0003-6
10.1029/1999WR900361
10.1038/ncomms4196
ContentType Journal Article
Copyright Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aar5629
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1022
ExternalDocumentID 30190404
10_1126_science_aar5629
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Sahel (African region)
GeographicLocations_xml – name: Sahel (African region)
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
C51
CITATION
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
GX1
NPM
OK1
UIG
YCJ
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c378t-19d1b7aa26073527d43f01ae8cf00a5d9d6d9f357256b2a771b8a05d5fe4d033
ISSN 0036-8075
1095-9203
IngestDate Mon Jul 21 11:27:24 EDT 2025
Fri Jul 25 19:17:28 EDT 2025
Thu Apr 03 07:05:04 EDT 2025
Thu Apr 24 23:09:13 EDT 2025
Tue Jul 01 01:51:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6406
Language English
License Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-19d1b7aa26073527d43f01ae8cf00a5d9d6d9f357256b2a771b8a05d5fe4d033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5905-3842
0000-0002-9984-9906
0000-0002-6336-0981
0000-0002-7489-7629
0000-0002-9725-0203
0000-0001-9805-2674
PMID 30190404
PQID 2100390538
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_2101275309
proquest_journals_2100390538
pubmed_primary_30190404
crossref_citationtrail_10_1126_science_aar5629
crossref_primary_10_1126_science_aar5629
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-07
PublicationDateYYYYMMDD 2018-09-07
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2018
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
Miller L. M. (e_1_3_2_46_2) 2015; 112
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
Motesharrei S. (e_1_3_2_5_2) 2017; 3
References_xml – ident: e_1_3_2_52_2
  doi: 10.26889/9781784671112
– ident: e_1_3_2_14_2
  doi: 10.1073/pnas.1510028112
– ident: e_1_3_2_34_2
  doi: 10.1007/s00382-016-3224-2
– ident: e_1_3_2_27_2
  doi: 10.1073/pnas.1000493107
– ident: e_1_3_2_49_2
– ident: e_1_3_2_21_2
  doi: 10.1126/science.286.5444.1537
– ident: e_1_3_2_33_2
  doi: 10.1007/s00382-008-0451-1
– ident: e_1_3_2_19_2
  doi: 10.1029/1999GL011089
– ident: e_1_3_2_51_2
  doi: 10.1080/07900627.2015.1012660
– ident: e_1_3_2_50_2
– ident: e_1_3_2_35_2
  doi: 10.1088/1748-9326/6/3/034001
– ident: e_1_3_2_48_2
  doi: 10.1007/978-1-4020-8494-2_19
– ident: e_1_3_2_30_2
  doi: 10.5194/acp-10-2053-2010
– ident: e_1_3_2_41_2
  doi: 10.1007/BF02915395
– ident: e_1_3_2_47_2
– ident: e_1_3_2_15_2
  doi: 10.1029/2004JD004763
– ident: e_1_3_2_55_2
  doi: 10.1073/pnas.1610359113
– ident: e_1_3_2_56_2
  doi: 10.1029/1998JD200006
– ident: e_1_3_2_4_2
  doi: 10.1038/nature16542
– volume: 3
  start-page: 470
  year: 2017
  ident: e_1_3_2_5_2
  article-title: Modeling sustainability: Population, inequality, consumption, and bidirectional coupling of the Earth and human systems
  publication-title: Natl. Sci. Rev.
– ident: e_1_3_2_24_2
  doi: 10.1002/qj.49710142802
– ident: e_1_3_2_40_2
  doi: 10.1175/1520-0469(2000)057<1767:AQETCM>2.0.CO;2
– ident: e_1_3_2_32_2
  doi: 10.5194/esd-7-167-2016
– ident: e_1_3_2_8_2
  doi: 10.1038/nclimate2921
– ident: e_1_3_2_54_2
– ident: e_1_3_2_12_2
  doi: 10.1073/pnas.0904101106
– ident: e_1_3_2_42_2
  doi: 10.1029/2004GB002273
– ident: e_1_3_2_9_2
  doi: 10.1038/nclimate2269
– ident: e_1_3_2_22_2
  doi: 10.1007/s00382-012-1397-x
– ident: e_1_3_2_44_2
  doi: 10.1175/JCLI-D-14-00245.1
– ident: e_1_3_2_38_2
– volume: 112
  start-page: 11169
  year: 2015
  ident: e_1_3_2_46_2
  article-title: Two methods for estimating limits to large-scale wind power generation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1408251112
– ident: e_1_3_2_13_2
  doi: 10.1038/nclimate1683
– ident: e_1_3_2_17_2
  doi: 10.1038/nclimate1505
– ident: e_1_3_2_36_2
  doi: 10.1016/j.solener.2012.09.014
– ident: e_1_3_2_10_2
  doi: 10.5194/esd-2-1-2011
– ident: e_1_3_2_7_2
  doi: 10.1038/ngeo3031
– ident: e_1_3_2_43_2
  doi: 10.1007/s00382-002-0268-2
– ident: e_1_3_2_28_2
  doi: 10.1007/BF00137034
– ident: e_1_3_2_45_2
  doi: 10.1126/science.aad1920
– ident: e_1_3_2_3_2
  doi: 10.1038/nclimate2935
– ident: e_1_3_2_2_2
  doi: 10.1038/nature14016
– ident: e_1_3_2_37_2
  doi: 10.1073/pnas.1611845114
– ident: e_1_3_2_23_2
  doi: 10.1029/2009GL039699
– ident: e_1_3_2_11_2
  doi: 10.1038/nclimate2843
– ident: e_1_3_2_25_2
  doi: 10.1126/science.1164363
– ident: e_1_3_2_29_2
  doi: 10.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2
– ident: e_1_3_2_6_2
  doi: 10.1038/nclimate2370
– ident: e_1_3_2_16_2
  doi: 10.1016/j.rser.2013.08.041
– ident: e_1_3_2_18_2
  doi: 10.1073/pnas.0406930101
– ident: e_1_3_2_39_2
  doi: 10.1175/BAMS-D-11-00238.1
– ident: e_1_3_2_53_2
  doi: 10.1007/s41825-017-0003-6
– ident: e_1_3_2_20_2
  doi: 10.1029/1999WR900361
– ident: e_1_3_2_26_2
  doi: 10.1038/ncomms4196
SSID ssj0009593
Score 2.6188028
Snippet Energy generation by wind and solar farms could reduce carbon emissions and thus mitigate anthropogenic climate change. But is this its only benefit? Li et al....
Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if...
More energy, more rainEnergy generation by wind and solar farms could reduce carbon emissions and thus mitigate anthropogenic climate change. But is this its...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1019
SubjectTerms Albedo
Anthropogenic factors
Climate change
Climate models
Drag reduction
Feedback
Friction reduction
Human influences
Positive feedback
Precipitation
Rainfall
Renewable energy
Scale (ratio)
Solar energy
Solar farms
Solar power
Solar power generation
Surface properties
Vegetation
Wind farms
Wind power
Wind power generation
Title Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation
URI https://www.ncbi.nlm.nih.gov/pubmed/30190404
https://www.proquest.com/docview/2100390538
https://www.proquest.com/docview/2101275309
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiReEBuXFQYyEg9DUapcnNtjN1ZNUIYEmVSeIjuxR6SSoiTdNH4Av5vjS9KAOmnwErWO7UQ-X47P8bkh9IZGuYhzUFNFQkFBESy044DkNmcsCZjPSazK-Xw8D88uyPtFsBiNfg28ltYtm-Q_t8aV_A9VoQ3oKqNk_4Gy_aTQAL-BvnAFCsP1TjQ-WZYgcHJdzsZqvq2uG2spXbvtBpaeW9elzsRqNVKBtQStvzedY-MXKlM1wz8pNjbckqUiVN8rfskH9nkjuHY8AATS3sgzIG3vrTjVPgWdi4EZNjhvmCv3ga8bUH6gy4re6KCbS-n612Ng1Up7VF3zUp9di_7W5_LKBKLJE_3hyYWr3Cx0iVvDbB1ZJ9JzNIPjW9oMh_Z1vnYDxZA4Q5YLPCXZvhcMqlfyCaU1iHrJZtvrTP3nn7LZxXyepaeL9B7a9UDdAH65Oz1-dzz7O31z_3YmSdQg_Kp7wJ_yzS1KixJe0kfoodE68FRDaA-NeLWP7us6pDf7aM-QqcFHJg3528coM-jCCl1YoQsP0IUlujAgBit0YYUuXFYYYIA1unCHLizRpfpu0PUEpbPT9OTMNuU47NyP4tZ2k8JlEaWgAUcgtkcF8YXjUh7nwnFoUCRFWCTCDyKQoplHo8hlMXWCIhCcFI7vP0U71ariBwgzl_ssFmFOA6nPw6yckZizXFBGKGFjNOnWMMtNqnpZMWWZKZXVCzOz6JlZ9DE66gf80Flabu962BElM59yk3mujFGH_Sgeo9f9bWC00npGK75aqz6yGILvwBTPNDH7Z_kyIwNxyPM7jH6BHmw-hkO009Zr_hIE25a9Mqj7Ddm0qSo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+model+shows+large-scale+wind+and+solar+farms+in+the+Sahara+increase+rain+and+vegetation&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Li%2C+Yan&rft.au=Kalnay%2C+Eugenia&rft.au=Motesharrei%2C+Safa&rft.au=Rivas%2C+Jorge&rft.date=2018-09-07&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=361&rft.issue=6406&rft.spage=1019&rft_id=info:doi/10.1126%2Fscience.aar5629&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon