Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation
Energy generation by wind and solar farms could reduce carbon emissions and thus mitigate anthropogenic climate change. But is this its only benefit? Li et al. conducted experiments using a climate model to show that the installation of large-scale wind and solar power generation facilities in the S...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 361; no. 6406; pp. 1019 - 1022 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
07.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Energy generation by wind and solar farms could reduce carbon emissions and thus mitigate anthropogenic climate change. But is this its only benefit? Li
et al.
conducted experiments using a climate model to show that the installation of large-scale wind and solar power generation facilities in the Sahara could cause more local rainfall, particularly in the neighboring Sahel region. This effect, caused by a combination of increased surface drag and reduced albedo, could increase coverage by vegetation, creating a positive feedback that would further increase rainfall.
Science
, this issue p.
1019
Large wind and solar farms could increase local rainfall and vegetation cover in the Sahara.
Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo–precipitation–vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts. |
---|---|
AbstractList | Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo-precipitation-vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts. Energy generation by wind and solar farms could reduce carbon emissions and thus mitigate anthropogenic climate change. But is this its only benefit? Li et al. conducted experiments using a climate model to show that the installation of large-scale wind and solar power generation facilities in the Sahara could cause more local rainfall, particularly in the neighboring Sahel region. This effect, caused by a combination of increased surface drag and reduced albedo, could increase coverage by vegetation, creating a positive feedback that would further increase rainfall. Science , this issue p. 1019 Large wind and solar farms could increase local rainfall and vegetation cover in the Sahara. Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo–precipitation–vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts. More energy, more rainEnergy generation by wind and solar farms could reduce carbon emissions and thus mitigate anthropogenic climate change. But is this its only benefit? Li et al. conducted experiments using a climate model to show that the installation of large-scale wind and solar power generation facilities in the Sahara could cause more local rainfall, particularly in the neighboring Sahel region. This effect, caused by a combination of increased surface drag and reduced albedo, could increase coverage by vegetation, creating a positive feedback that would further increase rainfall.Science, this issue p. 1019Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo–precipitation–vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts. Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo-precipitation-vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts.Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo-precipitation-vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts. |
Author | Kalnay, Eugenia Rivas, Jorge Kirk-Davidoff, Daniel Bach, Eviatar Li, Yan Kucharski, Fred Zeng, Ning Motesharrei, Safa |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0002-6336-0981 surname: Li fullname: Li, Yan organization: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA., Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA., State Key Laboratory of Earth Surface Processes and Resources Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China – sequence: 2 givenname: Eugenia orcidid: 0000-0002-9984-9906 surname: Kalnay fullname: Kalnay, Eugenia organization: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA., Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA – sequence: 3 givenname: Safa orcidid: 0000-0001-5905-3842 surname: Motesharrei fullname: Motesharrei, Safa organization: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA., Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA., Department of Physics, University of Maryland, College Park, MD 20742, USA – sequence: 4 givenname: Jorge surname: Rivas fullname: Rivas, Jorge – sequence: 5 givenname: Fred surname: Kucharski fullname: Kucharski, Fred organization: Earth System Physics Section, Abdus Salam International Centre for Theoretical Physics, Trieste I-34100, Italy – sequence: 6 givenname: Daniel orcidid: 0000-0001-9805-2674 surname: Kirk-Davidoff fullname: Kirk-Davidoff, Daniel organization: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA – sequence: 7 givenname: Eviatar orcidid: 0000-0002-9725-0203 surname: Bach fullname: Bach, Eviatar organization: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA., Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA – sequence: 8 givenname: Ning orcidid: 0000-0002-7489-7629 surname: Zeng fullname: Zeng, Ning organization: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA., LASG, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30190404$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rGzEQxUVwiJ2Pc29F0Esu64wka7U6FtO0hUAPyV2Mpdl4w-7KldYN_e8jY-cSyEEM0vzeoHnvks3GOBJjXwQshZD1XfYdjZ6WiEnX0p6xhQCrKytBzdgCQNVVA0bP2WXOLwClZ9UFmysQFlawWjC37rsBJ-JDDNTzvI2vmfeYnqnKHnvir90YOJaTY3nmLaYh827k05b4I24xYbn5RJiJJyyNA_uPnmnCqYvjNTtvsc90c6pX7On-x9P6V_Xw5-fv9feHyivTTJWwQWwMoqzBKC1NWKkWBFLjWwDUwYY62FZpI3W9kWiM2DQIOuiWVgGUumK3x7G7FP_uKU9u6LKnvseR4j47KUBIoxXYgn77gL7EfRrL5w4UKAtaNYX6eqL2m4GC26ViU_rv3p0rgD4CPsWcE7XOd8eVp2JD7wS4Q0LulJA7JVR0dx9076M_U7wBC7iVZg |
CitedBy_id | crossref_primary_10_1051_e3sconf_202452002013 crossref_primary_10_1016_j_agrformet_2021_108607 crossref_primary_10_1007_s00382_019_05002_w crossref_primary_10_1029_2020GL090789 crossref_primary_10_1175_JCLI_D_20_0628_1 crossref_primary_10_3390_en16124559 crossref_primary_10_5194_esd_15_109_2024 crossref_primary_10_1016_j_jhydrol_2024_132183 crossref_primary_10_1029_2019JD031972 crossref_primary_10_3389_fevo_2023_1151182 crossref_primary_10_1016_j_jclepro_2021_129010 crossref_primary_10_1002_ldr_4783 crossref_primary_10_1038_s41612_024_00606_4 crossref_primary_10_3389_fenvs_2024_1355508 crossref_primary_10_5194_npg_29_133_2022 crossref_primary_10_1017_jfm_2022_732 crossref_primary_10_1016_j_jenvman_2022_116338 crossref_primary_10_1038_s41598_023_49650_9 crossref_primary_10_1016_j_geosus_2024_01_007 crossref_primary_10_1038_s41598_019_57371_1 crossref_primary_10_1016_j_buildenv_2021_107628 crossref_primary_10_1016_j_jclepro_2020_121376 crossref_primary_10_1093_pnasnexus_pgad097 crossref_primary_10_1002_vzj2_70002 crossref_primary_10_1038_s43247_024_01619_w crossref_primary_10_1088_2515_7620_ac40f1 crossref_primary_10_3390_su14127493 crossref_primary_10_2139_ssrn_3769155 crossref_primary_10_1029_2023JD040271 crossref_primary_10_3389_fenrg_2020_567986 crossref_primary_10_1016_j_egyr_2022_03_039 crossref_primary_10_1016_j_renene_2022_01_118 crossref_primary_10_3389_fmicb_2024_1494681 crossref_primary_10_1016_j_jclepro_2023_139958 crossref_primary_10_1029_2023GL105150 crossref_primary_10_1016_j_xinn_2024_100734 crossref_primary_10_1088_1748_9326_ada302 crossref_primary_10_59717_j_xinn_energy_2024_100046 crossref_primary_10_1016_j_ecofro_2024_11_005 crossref_primary_10_1016_j_energy_2021_121519 crossref_primary_10_1016_j_jenvman_2023_118304 crossref_primary_10_1007_s00704_022_04337_5 crossref_primary_10_1038_s41598_023_36314_x crossref_primary_10_1016_j_jag_2024_104233 crossref_primary_10_3390_challe13010022 crossref_primary_10_1007_s11430_023_1363_3 crossref_primary_10_1093_nsr_nwac242 crossref_primary_10_1016_j_scitotenv_2023_167203 crossref_primary_10_1016_j_solener_2022_09_023 crossref_primary_10_1016_j_renene_2023_119551 crossref_primary_10_1016_j_apenergy_2023_120789 crossref_primary_10_1080_17538947_2023_2224586 crossref_primary_10_1007_s13351_021_1099_6 crossref_primary_10_1016_j_catena_2024_108368 crossref_primary_10_1038_s41558_023_01692_7 crossref_primary_10_1088_1748_9326_abbdea crossref_primary_10_1016_j_accre_2024_07_007 crossref_primary_10_1007_s43995_025_00102_7 crossref_primary_10_1016_j_ocecoaman_2021_105611 crossref_primary_10_3390_j3030027 crossref_primary_10_1016_j_rset_2021_100008 crossref_primary_10_1016_j_xcrp_2023_101518 crossref_primary_10_1038_s43247_023_01117_5 crossref_primary_10_1186_s12862_025_02350_6 crossref_primary_10_3390_conservation5010004 crossref_primary_10_1039_C8EW00571K crossref_primary_10_1016_j_scitotenv_2021_149946 crossref_primary_10_3390_rs15010228 crossref_primary_10_1016_j_uclim_2023_101668 crossref_primary_10_1016_j_scitotenv_2021_146707 crossref_primary_10_3390_su15065496 crossref_primary_10_1016_j_solener_2024_112446 crossref_primary_10_5194_gmd_16_1083_2023 crossref_primary_10_3390_su16229922 crossref_primary_10_3390_su17020634 crossref_primary_10_3389_fmicb_2022_1065899 crossref_primary_10_3390_rs16101711 crossref_primary_10_1088_2515_7620_ac9bd7 crossref_primary_10_1016_j_geosus_2020_02_003 crossref_primary_10_1088_1748_9326_ac49ba crossref_primary_10_1007_s00704_025_05430_1 crossref_primary_10_1016_j_solener_2023_112198 crossref_primary_10_3390_su12083403 crossref_primary_10_1088_1748_9326_acf7d8 crossref_primary_10_1073_pnas_1909269116 crossref_primary_10_1016_j_ejrh_2024_101941 crossref_primary_10_3390_land12112049 crossref_primary_10_1029_2023GL104137 crossref_primary_10_1016_j_rser_2021_111021 crossref_primary_10_1016_j_agrformet_2021_108772 crossref_primary_10_1089_ees_2021_0014 crossref_primary_10_1002_ldr_3408 crossref_primary_10_3390_rs12111825 crossref_primary_10_1146_annurev_earth_053018_060428 crossref_primary_10_1360_SSTe_2023_0307 crossref_primary_10_3390_plants13111491 crossref_primary_10_1016_j_joule_2024_02_018 crossref_primary_10_1080_02522667_2022_2042096 crossref_primary_10_1029_2024GL109296 crossref_primary_10_1007_s10668_021_01424_x crossref_primary_10_1038_s41893_020_0574_x crossref_primary_10_1038_s41598_019_42569_0 crossref_primary_10_1016_j_jqsrt_2025_109417 crossref_primary_10_1029_2024EF004427 crossref_primary_10_1108_SRT_05_2022_0012 crossref_primary_10_1016_j_scitotenv_2024_176911 crossref_primary_10_1016_j_egyr_2023_08_064 crossref_primary_10_1016_j_resconrec_2025_108127 crossref_primary_10_3390_rs16224266 crossref_primary_10_3390_rs17010010 crossref_primary_10_1016_j_oneear_2020_03_002 crossref_primary_10_1016_j_energy_2024_132936 crossref_primary_10_5194_essd_14_3743_2022 crossref_primary_10_1016_j_atmosenv_2022_119074 crossref_primary_10_1175_JHM_D_20_0266_1 crossref_primary_10_1016_j_renene_2024_120461 crossref_primary_10_1007_s11769_019_1038_y crossref_primary_10_1016_j_renene_2024_121546 crossref_primary_10_34133_ehs_0014 crossref_primary_10_5194_esd_13_219_2022 crossref_primary_10_1002_ldr_5372 crossref_primary_10_1063_5_0051158 crossref_primary_10_5814_j_issn_1674_764x_2024_01_013 crossref_primary_10_1016_j_seta_2023_103120 crossref_primary_10_3389_fmicb_2023_1190650 crossref_primary_10_1016_j_seta_2024_104075 crossref_primary_10_1002_adfm_202212207 crossref_primary_10_1007_s11356_020_11742_8 crossref_primary_10_1038_s41893_020_0562_1 crossref_primary_10_1016_j_renene_2021_10_054 crossref_primary_10_1063_5_0047077 crossref_primary_10_1093_pnasnexus_pgad352 crossref_primary_10_1021_acs_energyfuels_0c02595 crossref_primary_10_1016_j_renene_2023_05_068 crossref_primary_10_1051_e3sconf_202561702005 crossref_primary_10_1016_j_renene_2021_03_148 crossref_primary_10_1007_s00382_024_07262_7 crossref_primary_10_3389_fenvs_2024_1406546 crossref_primary_10_1016_j_geomorph_2020_107165 crossref_primary_10_59231_SARI7636 crossref_primary_10_1016_j_renene_2021_02_076 |
Cites_doi | 10.26889/9781784671112 10.1073/pnas.1510028112 10.1007/s00382-016-3224-2 10.1073/pnas.1000493107 10.1126/science.286.5444.1537 10.1007/s00382-008-0451-1 10.1029/1999GL011089 10.1080/07900627.2015.1012660 10.1088/1748-9326/6/3/034001 10.1007/978-1-4020-8494-2_19 10.5194/acp-10-2053-2010 10.1007/BF02915395 10.1029/2004JD004763 10.1073/pnas.1610359113 10.1029/1998JD200006 10.1038/nature16542 10.1002/qj.49710142802 10.1175/1520-0469(2000)057<1767:AQETCM>2.0.CO;2 10.5194/esd-7-167-2016 10.1038/nclimate2921 10.1073/pnas.0904101106 10.1029/2004GB002273 10.1038/nclimate2269 10.1007/s00382-012-1397-x 10.1175/JCLI-D-14-00245.1 10.1073/pnas.1408251112 10.1038/nclimate1683 10.1038/nclimate1505 10.1016/j.solener.2012.09.014 10.5194/esd-2-1-2011 10.1038/ngeo3031 10.1007/s00382-002-0268-2 10.1007/BF00137034 10.1126/science.aad1920 10.1038/nclimate2935 10.1038/nature14016 10.1073/pnas.1611845114 10.1029/2009GL039699 10.1038/nclimate2843 10.1126/science.1164363 10.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2 10.1038/nclimate2370 10.1016/j.rser.2013.08.041 10.1073/pnas.0406930101 10.1175/BAMS-D-11-00238.1 10.1007/s41825-017-0003-6 10.1029/1999WR900361 10.1038/ncomms4196 |
ContentType | Journal Article |
Copyright | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aar5629 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1022 |
ExternalDocumentID | 30190404 10_1126_science_aar5629 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Sahel (African region) |
GeographicLocations_xml | – name: Sahel (African region) |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADUKH ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 C51 CITATION CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ GX1 NPM OK1 UIG YCJ ZKG 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c378t-19d1b7aa26073527d43f01ae8cf00a5d9d6d9f357256b2a771b8a05d5fe4d033 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Mon Jul 21 11:27:24 EDT 2025 Fri Jul 25 19:17:28 EDT 2025 Thu Apr 03 07:05:04 EDT 2025 Thu Apr 24 23:09:13 EDT 2025 Tue Jul 01 01:51:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6406 |
Language | English |
License | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-19d1b7aa26073527d43f01ae8cf00a5d9d6d9f357256b2a771b8a05d5fe4d033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5905-3842 0000-0002-9984-9906 0000-0002-6336-0981 0000-0002-7489-7629 0000-0002-9725-0203 0000-0001-9805-2674 |
PMID | 30190404 |
PQID | 2100390538 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2101275309 proquest_journals_2100390538 pubmed_primary_30190404 crossref_citationtrail_10_1126_science_aar5629 crossref_primary_10_1126_science_aar5629 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-07 |
PublicationDateYYYYMMDD | 2018-09-07 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2018 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 Miller L. M. (e_1_3_2_46_2) 2015; 112 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 Motesharrei S. (e_1_3_2_5_2) 2017; 3 |
References_xml | – ident: e_1_3_2_52_2 doi: 10.26889/9781784671112 – ident: e_1_3_2_14_2 doi: 10.1073/pnas.1510028112 – ident: e_1_3_2_34_2 doi: 10.1007/s00382-016-3224-2 – ident: e_1_3_2_27_2 doi: 10.1073/pnas.1000493107 – ident: e_1_3_2_49_2 – ident: e_1_3_2_21_2 doi: 10.1126/science.286.5444.1537 – ident: e_1_3_2_33_2 doi: 10.1007/s00382-008-0451-1 – ident: e_1_3_2_19_2 doi: 10.1029/1999GL011089 – ident: e_1_3_2_51_2 doi: 10.1080/07900627.2015.1012660 – ident: e_1_3_2_50_2 – ident: e_1_3_2_35_2 doi: 10.1088/1748-9326/6/3/034001 – ident: e_1_3_2_48_2 doi: 10.1007/978-1-4020-8494-2_19 – ident: e_1_3_2_30_2 doi: 10.5194/acp-10-2053-2010 – ident: e_1_3_2_41_2 doi: 10.1007/BF02915395 – ident: e_1_3_2_47_2 – ident: e_1_3_2_15_2 doi: 10.1029/2004JD004763 – ident: e_1_3_2_55_2 doi: 10.1073/pnas.1610359113 – ident: e_1_3_2_56_2 doi: 10.1029/1998JD200006 – ident: e_1_3_2_4_2 doi: 10.1038/nature16542 – volume: 3 start-page: 470 year: 2017 ident: e_1_3_2_5_2 article-title: Modeling sustainability: Population, inequality, consumption, and bidirectional coupling of the Earth and human systems publication-title: Natl. Sci. Rev. – ident: e_1_3_2_24_2 doi: 10.1002/qj.49710142802 – ident: e_1_3_2_40_2 doi: 10.1175/1520-0469(2000)057<1767:AQETCM>2.0.CO;2 – ident: e_1_3_2_32_2 doi: 10.5194/esd-7-167-2016 – ident: e_1_3_2_8_2 doi: 10.1038/nclimate2921 – ident: e_1_3_2_54_2 – ident: e_1_3_2_12_2 doi: 10.1073/pnas.0904101106 – ident: e_1_3_2_42_2 doi: 10.1029/2004GB002273 – ident: e_1_3_2_9_2 doi: 10.1038/nclimate2269 – ident: e_1_3_2_22_2 doi: 10.1007/s00382-012-1397-x – ident: e_1_3_2_44_2 doi: 10.1175/JCLI-D-14-00245.1 – ident: e_1_3_2_38_2 – volume: 112 start-page: 11169 year: 2015 ident: e_1_3_2_46_2 article-title: Two methods for estimating limits to large-scale wind power generation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1408251112 – ident: e_1_3_2_13_2 doi: 10.1038/nclimate1683 – ident: e_1_3_2_17_2 doi: 10.1038/nclimate1505 – ident: e_1_3_2_36_2 doi: 10.1016/j.solener.2012.09.014 – ident: e_1_3_2_10_2 doi: 10.5194/esd-2-1-2011 – ident: e_1_3_2_7_2 doi: 10.1038/ngeo3031 – ident: e_1_3_2_43_2 doi: 10.1007/s00382-002-0268-2 – ident: e_1_3_2_28_2 doi: 10.1007/BF00137034 – ident: e_1_3_2_45_2 doi: 10.1126/science.aad1920 – ident: e_1_3_2_3_2 doi: 10.1038/nclimate2935 – ident: e_1_3_2_2_2 doi: 10.1038/nature14016 – ident: e_1_3_2_37_2 doi: 10.1073/pnas.1611845114 – ident: e_1_3_2_23_2 doi: 10.1029/2009GL039699 – ident: e_1_3_2_11_2 doi: 10.1038/nclimate2843 – ident: e_1_3_2_25_2 doi: 10.1126/science.1164363 – ident: e_1_3_2_29_2 doi: 10.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2 – ident: e_1_3_2_6_2 doi: 10.1038/nclimate2370 – ident: e_1_3_2_16_2 doi: 10.1016/j.rser.2013.08.041 – ident: e_1_3_2_18_2 doi: 10.1073/pnas.0406930101 – ident: e_1_3_2_39_2 doi: 10.1175/BAMS-D-11-00238.1 – ident: e_1_3_2_53_2 doi: 10.1007/s41825-017-0003-6 – ident: e_1_3_2_20_2 doi: 10.1029/1999WR900361 – ident: e_1_3_2_26_2 doi: 10.1038/ncomms4196 |
SSID | ssj0009593 |
Score | 2.6188028 |
Snippet | Energy generation by wind and solar farms could reduce carbon emissions and thus mitigate anthropogenic climate change. But is this its only benefit? Li
et al.... Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if... More energy, more rainEnergy generation by wind and solar farms could reduce carbon emissions and thus mitigate anthropogenic climate change. But is this its... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1019 |
SubjectTerms | Albedo Anthropogenic factors Climate change Climate models Drag reduction Feedback Friction reduction Human influences Positive feedback Precipitation Rainfall Renewable energy Scale (ratio) Solar energy Solar farms Solar power Solar power generation Surface properties Vegetation Wind farms Wind power Wind power generation |
Title | Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30190404 https://www.proquest.com/docview/2100390538 https://www.proquest.com/docview/2101275309 |
Volume | 361 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiReEBuXFQYyEg9DUapcnNtjN1ZNUIYEmVSeIjuxR6SSoiTdNH4Av5vjS9KAOmnwErWO7UQ-X47P8bkh9IZGuYhzUFNFQkFBESy044DkNmcsCZjPSazK-Xw8D88uyPtFsBiNfg28ltYtm-Q_t8aV_A9VoQ3oKqNk_4Gy_aTQAL-BvnAFCsP1TjQ-WZYgcHJdzsZqvq2uG2spXbvtBpaeW9elzsRqNVKBtQStvzedY-MXKlM1wz8pNjbckqUiVN8rfskH9nkjuHY8AATS3sgzIG3vrTjVPgWdi4EZNjhvmCv3ga8bUH6gy4re6KCbS-n612Ng1Up7VF3zUp9di_7W5_LKBKLJE_3hyYWr3Cx0iVvDbB1ZJ9JzNIPjW9oMh_Z1vnYDxZA4Q5YLPCXZvhcMqlfyCaU1iHrJZtvrTP3nn7LZxXyepaeL9B7a9UDdAH65Oz1-dzz7O31z_3YmSdQg_Kp7wJ_yzS1KixJe0kfoodE68FRDaA-NeLWP7us6pDf7aM-QqcFHJg3528coM-jCCl1YoQsP0IUlujAgBit0YYUuXFYYYIA1unCHLizRpfpu0PUEpbPT9OTMNuU47NyP4tZ2k8JlEaWgAUcgtkcF8YXjUh7nwnFoUCRFWCTCDyKQoplHo8hlMXWCIhCcFI7vP0U71ariBwgzl_ssFmFOA6nPw6yckZizXFBGKGFjNOnWMMtNqnpZMWWZKZXVCzOz6JlZ9DE66gf80Flabu962BElM59yk3mujFGH_Sgeo9f9bWC00npGK75aqz6yGILvwBTPNDH7Z_kyIwNxyPM7jH6BHmw-hkO009Zr_hIE25a9Mqj7Ddm0qSo |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+model+shows+large-scale+wind+and+solar+farms+in+the+Sahara+increase+rain+and+vegetation&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Li%2C+Yan&rft.au=Kalnay%2C+Eugenia&rft.au=Motesharrei%2C+Safa&rft.au=Rivas%2C+Jorge&rft.date=2018-09-07&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=361&rft.issue=6406&rft.spage=1019&rft_id=info:doi/10.1126%2Fscience.aar5629&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |