Peroxisome Proliferator-Activated Receptor γ Coactivator 1 Coactivators, Energy Homeostasis, and Metabolism

Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of...

Full description

Saved in:
Bibliographic Details
Published inEndocrine reviews Vol. 27; no. 7; pp. 728 - 735
Main Authors Handschin, Christoph, Spiegelman, Bruce M.
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.12.2006
Copyright by The Endocrine Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of the best-studied examples of coactivator control of metabolic pathways is the peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1) family. These proteins are strong activators of mitochondrial function and are thus dominant regulators of oxidative metabolism in a variety of tissues. The PGC-1 coactivators themselves are subject to powerful regulation at the transcriptional and posttranslational levels. Recent studies have elucidated the function of the PGC-1 coactivators in different tissues and have highlighted the implications of PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration.
AbstractList Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of the best-studied examples of coactivator control of metabolic pathways is the peroxisome proliferator-activated receptor coactivator 1 (PGC-1) family. These proteins are strong activators of mitochondrial function and are thus dominant regulators of oxidative metabolism in a variety of tissues. The PGC-1 coactivators themselves are subject to powerful regulation at the transcriptional and posttranslational levels. Recent studies have elucidated the function of the PGC-1 coactivators in different tissues and have highlighted the implications of PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration.Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of the best-studied examples of coactivator control of metabolic pathways is the peroxisome proliferator-activated receptor coactivator 1 (PGC-1) family. These proteins are strong activators of mitochondrial function and are thus dominant regulators of oxidative metabolism in a variety of tissues. The PGC-1 coactivators themselves are subject to powerful regulation at the transcriptional and posttranslational levels. Recent studies have elucidated the function of the PGC-1 coactivators in different tissues and have highlighted the implications of PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration.
Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of the best-studied examples of coactivator control of metabolic pathways is the peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1) family. These proteins are strong activators of mitochondrial function and are thus dominant regulators of oxidative metabolism in a variety of tissues. The PGC-1 coactivators themselves are subject to powerful regulation at the transcriptional and posttranslational levels. Recent studies have elucidated the function of the PGC-1 coactivators in different tissues and have highlighted the implications of PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration.
Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of the best-studied examples of coactivator control of metabolic pathways is the peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) family. These proteins are strong activators of mitochondrial function and are thus dominant regulators of oxidative metabolism in a variety of tissues. The PGC-1 coactivators themselves are subject to powerful regulation at the transcriptional and posttranslational levels. Recent studies have elucidated the function of the PGC-1 coactivators in different tissues and have highlighted the implications of PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration.
Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of the best-studied examples of coactivator control of metabolic pathways is the peroxisome proliferator-activated receptor coactivator 1 (PGC-1) family. These proteins are strong activators of mitochondrial function and are thus dominant regulators of oxidative metabolism in a variety of tissues. The PGC-1 coactivators themselves are subject to powerful regulation at the transcriptional and posttranslational levels. Recent studies have elucidated the function of the PGC-1 coactivators in different tissues and have highlighted the implications of PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration.
Author Handschin, Christoph
Spiegelman, Bruce M.
AuthorAffiliation Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
AuthorAffiliation_xml – name: Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
Author_xml – sequence: 1
  givenname: Christoph
  surname: Handschin
  fullname: Handschin, Christoph
  organization: 1Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
– sequence: 2
  givenname: Bruce M.
  surname: Spiegelman
  fullname: Spiegelman, Bruce M.
  email: bruce_spiegelman@dfci.harvard.edu
  organization: 1Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17018837$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1TAQhS3Uit4WdqxRJCTYNGUmTmJ7WV0VilREhUBiZznOhKbkxre2Q-lz8R48E05TEKpAbDyao-8c_4z32c7oRmLsCcIRFggvyR8VAHUOwMUDtkJVVrlAqXbYCrDmuajVpz22H8IlAJQg1UO2hwJQSi5WbDgn7771wW0oO_du6DvyJjqfH9vYfzWR2uw9WdomKfvxPVs7s-ipxT-7cJidjOQ_32SnKcqFaEKfNDO22VuKpknJYfOI7XZmCPT4rh6wj69OPqxP87N3r9-sj89yy4WsctVIS7zoWqSWF6YqLa8biQZQWFBSNNaUqW-hIbCy6KpKCAOtbFWqLQp-wJ4vuVvvriYKUW_6YGkYzEhuCrqWhaw4wn9BVBXyqigT-OweeOkmP6ZLaI6FkukENSbq6R01NRtq9db3G-Nv9K_nTkCxANa7EDx12vbRxN6N0Zt-0Ah6nqkmr-eZ6nmmyXR4z_Q79-94ueDXbojkw5dhuk7ABZkhXiQkQZVS-WzAtEA-S1WyvVhsbtr-a4PbP8Z_Atbrvl0
CitedBy_id crossref_primary_10_1016_j_freeradbiomed_2013_04_016
crossref_primary_10_3390_ijms22105390
crossref_primary_10_1155_2017_7083049
crossref_primary_10_1074_jbc_RA118_002377
crossref_primary_10_1161_CIRCULATIONAHA_113_001590
crossref_primary_10_2337_db07_1623
crossref_primary_10_1080_15476286_2016_1276149
crossref_primary_10_3390_cells9102234
crossref_primary_10_2527_jas_2013_6421
crossref_primary_10_1152_ajpendo_00234_2015
crossref_primary_10_1016_j_bbadis_2020_165838
crossref_primary_10_1146_annurev_nutr_012809_104638
crossref_primary_10_1002_jcp_24812
crossref_primary_10_1016_j_apsb_2020_01_001
crossref_primary_10_1016_j_lfs_2023_121686
crossref_primary_10_1016_j_mce_2008_01_017
crossref_primary_10_1073_pnas_1504391112
crossref_primary_10_1016_j_scr_2019_101458
crossref_primary_10_1089_ars_2009_2743
crossref_primary_10_1093_gerona_glr080
crossref_primary_10_1016_j_jaim_2017_07_004
crossref_primary_10_1016_j_mito_2022_05_007
crossref_primary_10_1074_jbc_M710150200
crossref_primary_10_1074_jbc_M109_083121
crossref_primary_10_1096_fj_09_142000
crossref_primary_10_32604_biocell_2022_014997
crossref_primary_10_1093_gerona_glt019
crossref_primary_10_3390_ijms22041651
crossref_primary_10_1016_j_beem_2012_05_001
crossref_primary_10_2337_db08_1466
crossref_primary_10_1210_jc_2013_3165
crossref_primary_10_1007_s00125_013_3133_4
crossref_primary_10_1016_j_cbpb_2015_04_007
crossref_primary_10_1016_j_redox_2016_10_004
crossref_primary_10_1073_pnas_0912533106
crossref_primary_10_1007_s10522_023_10024_3
crossref_primary_10_1111_jcmm_18051
crossref_primary_10_1007_s12192_023_01369_2
crossref_primary_10_1002_mnfr_201300747
crossref_primary_10_1016_j_apsb_2013_09_001
crossref_primary_10_1074_jbc_M109_018911
crossref_primary_10_1016_j_cbpb_2018_02_004
crossref_primary_10_1097_MNH_0b013e32835b54b0
crossref_primary_10_1016_j_acthis_2023_152097
crossref_primary_10_3390_ijms24097717
crossref_primary_10_1016_j_ejphar_2013_11_009
crossref_primary_10_1074_jbc_M111_251926
crossref_primary_10_1016_j_arr_2024_102396
crossref_primary_10_3390_medicina55080485
crossref_primary_10_1097_WAD_0b013e31815721c3
crossref_primary_10_1111_obr_13164
crossref_primary_10_3390_life10090173
crossref_primary_10_1080_15548627_2021_1916194
crossref_primary_10_1194_jlr_M800233_JLR200
crossref_primary_10_1007_s10545_010_9162_y
crossref_primary_10_2217_dmt_12_42
crossref_primary_10_15252_emmm_201606372
crossref_primary_10_1093_hmg_ddy254
crossref_primary_10_1152_ajpcell_00469_2008
crossref_primary_10_1096_fj_13_240168
crossref_primary_10_1152_ajpendo_00331_2016
crossref_primary_10_3390_cells8040289
crossref_primary_10_1097_BOR_0b013e3282efb761
crossref_primary_10_1002_mds_23711
crossref_primary_10_1016_j_bbamcr_2014_08_010
crossref_primary_10_1152_ajprenal_00393_2020
crossref_primary_10_1021_acs_jnatprod_6b01086
crossref_primary_10_1371_journal_pone_0165598
crossref_primary_10_1016_j_nbd_2010_08_017
crossref_primary_10_1371_journal_pone_0053562
crossref_primary_10_3390_ijms22084167
crossref_primary_10_1093_hmg_ddp208
crossref_primary_10_3390_cells9071685
crossref_primary_10_1016_j_plipres_2014_11_003
crossref_primary_10_3390_diagnostics12071618
crossref_primary_10_1194_jlr_M020628
crossref_primary_10_1007_s10456_022_09835_8
crossref_primary_10_33549_physiolres_934529
crossref_primary_10_1111_apha_14234
crossref_primary_10_1371_journal_pone_0015239
crossref_primary_10_1016_j_biotechadv_2016_04_004
crossref_primary_10_1096_fj_14_257717
crossref_primary_10_3109_02713683_2015_1050736
crossref_primary_10_3389_fgene_2014_00216
crossref_primary_10_1210_me_2014_1083
crossref_primary_10_3892_ijmm_2016_2659
crossref_primary_10_1158_0008_5472_CAN_11_2967
crossref_primary_10_1172_jci_insight_131102
crossref_primary_10_1007_s00726_011_1123_8
crossref_primary_10_1155_2017_7821672
crossref_primary_10_1007_s11011_021_00750_3
crossref_primary_10_1016_j_abb_2014_06_028
crossref_primary_10_3109_09687688_2012_729094
crossref_primary_10_1016_j_yjmcc_2008_03_021
crossref_primary_10_5607_en_2014_23_4_345
crossref_primary_10_18632_oncotarget_25267
crossref_primary_10_1016_j_exger_2016_03_015
crossref_primary_10_1111_bph_12650
crossref_primary_10_1016_j_nut_2016_09_001
crossref_primary_10_1074_jbc_M710526200
crossref_primary_10_1016_j_neuroscience_2017_01_025
crossref_primary_10_1152_ajpendo_00163_2009
crossref_primary_10_1111_j_1471_4159_2010_06803_x
crossref_primary_10_1073_pnas_1115813109
crossref_primary_10_1016_j_semnephrol_2018_01_003
crossref_primary_10_1152_physiol_00046_2007
crossref_primary_10_1016_j_molmet_2024_101968
crossref_primary_10_1016_j_orcp_2020_12_001
crossref_primary_10_1152_ajpendo_00541_2009
crossref_primary_10_1016_j_celrep_2022_111204
crossref_primary_10_1074_jbc_M115_638924
crossref_primary_10_17221_263_2009_CJAS
crossref_primary_10_1002_jat_4288
crossref_primary_10_2147_JPR_S233583
crossref_primary_10_1002_mus_23838
crossref_primary_10_18632_aging_204577
crossref_primary_10_1016_j_jid_2020_08_007
crossref_primary_10_4196_kjpp_2015_19_3_283
crossref_primary_10_3390_ijms242216187
crossref_primary_10_1007_s00018_010_0454_z
crossref_primary_10_1186_s12902_015_0010_9
crossref_primary_10_1016_j_tem_2008_07_005
crossref_primary_10_3892_ijo_2015_2834
crossref_primary_10_1038_ncomms4224
crossref_primary_10_1016_j_mito_2021_09_012
crossref_primary_10_1002_jcp_24664
crossref_primary_10_1152_ajpregu_00189_2010
crossref_primary_10_1002_jms_3227
crossref_primary_10_1186_1471_2164_15_413
crossref_primary_10_1016_j_arr_2015_09_005
crossref_primary_10_1089_ars_2012_4774
crossref_primary_10_1016_j_mce_2010_08_003
crossref_primary_10_1021_acsomega_7b01134
crossref_primary_10_1210_me_2010_0512
crossref_primary_10_1530_JME_16_0260
crossref_primary_10_3390_biomedicines8090351
crossref_primary_10_1016_j_freeradbiomed_2024_05_022
crossref_primary_10_1152_ajpendo_00233_2019
crossref_primary_10_1016_j_molcel_2007_08_012
crossref_primary_10_1093_gbe_evu025
crossref_primary_10_3389_fcvm_2021_664626
crossref_primary_10_1038_emboj_2012_300
crossref_primary_10_1016_j_jsbmb_2012_09_001
crossref_primary_10_3390_ph2030250
crossref_primary_10_1016_j_bbadis_2016_11_023
crossref_primary_10_1007_s11357_024_01465_w
crossref_primary_10_1111_cns_12655
crossref_primary_10_1016_j_fbio_2025_106248
crossref_primary_10_1016_j_bbadis_2024_167497
crossref_primary_10_1002_pmic_201800404
crossref_primary_10_1111_j_1440_1681_2009_05275_x
crossref_primary_10_1080_03639045_2023_2243334
crossref_primary_10_3390_nu8040203
crossref_primary_10_1096_fj_13_238071
crossref_primary_10_1007_s11033_024_09232_y
crossref_primary_10_1038_srep30272
crossref_primary_10_1146_annurev_physiol_010908_163119
crossref_primary_10_1111_j_1474_9726_2012_00844_x
crossref_primary_10_1186_s12906_016_1109_x
crossref_primary_10_1681_ASN_2014121271
crossref_primary_10_1016_j_bbalip_2009_11_008
crossref_primary_10_1038_nrm_2016_23
crossref_primary_10_1074_jbc_M110_179523
crossref_primary_10_1124_jpet_112_192138
crossref_primary_10_1038_s41392_024_01756_w
crossref_primary_10_1007_s00441_022_03602_3
crossref_primary_10_1038_ijo_2011_176
crossref_primary_10_3390_nu8050254
crossref_primary_10_1007_s11033_018_4551_7
crossref_primary_10_1007_s12035_019_01731_5
crossref_primary_10_1016_j_phymed_2022_153947
crossref_primary_10_1210_en_2008_0051
crossref_primary_10_1016_j_ceb_2014_11_002
crossref_primary_10_1016_j_tips_2016_08_001
crossref_primary_10_1073_pnas_1207287109
crossref_primary_10_1152_ajpcell_00266_2014
crossref_primary_10_1038_srep30051
crossref_primary_10_1155_2007_68202
crossref_primary_10_1111_jcmm_70236
crossref_primary_10_1210_er_2007_0012
crossref_primary_10_1172_JCI39054
crossref_primary_10_1016_j_ejphar_2020_173273
crossref_primary_10_1016_j_phymed_2021_153658
crossref_primary_10_1016_j_niox_2018_04_005
crossref_primary_10_1139_H10_030
crossref_primary_10_3390_nu14153112
crossref_primary_10_1038_nature07206
crossref_primary_10_1155_2013_593267
crossref_primary_10_1002_embr_201338126
crossref_primary_10_1016_j_mito_2015_01_007
crossref_primary_10_1016_j_ceb_2008_04_005
crossref_primary_10_1074_jbc_M110_145995
crossref_primary_10_1002_ptr_6374
crossref_primary_10_14336_AD_2019_1125
crossref_primary_10_3945_jn_113_186676
crossref_primary_10_3389_fcell_2020_00671
crossref_primary_10_1093_hmg_ddt359
crossref_primary_10_4161_rna_8_6_17210
crossref_primary_10_1016_j_ecl_2008_06_006
crossref_primary_10_1155_2021_3653157
crossref_primary_10_1186_s12967_023_04200_9
crossref_primary_10_1016_j_bbrc_2024_150478
crossref_primary_10_3233_JAD_220514
crossref_primary_10_1016_j_mce_2010_11_020
crossref_primary_10_1111_bph_12394
crossref_primary_10_1002_jcp_24015
crossref_primary_10_1152_ajpcell_00009_2016
crossref_primary_10_1038_s41698_019_0081_6
crossref_primary_10_1371_journal_pone_0058683
crossref_primary_10_1007_s00726_016_2206_3
crossref_primary_10_1007_s12264_023_01114_w
crossref_primary_10_1016_j_expneurol_2020_113309
crossref_primary_10_1042_BSR20190127
crossref_primary_10_1007_s00109_008_0425_0
crossref_primary_10_1016_j_lfs_2019_116579
crossref_primary_10_1172_JCI31785
crossref_primary_10_1007_s00726_020_02934_0
crossref_primary_10_1007_s40279_024_02072_7
crossref_primary_10_1242_jeb_014951
crossref_primary_10_1016_j_yexcr_2010_10_006
crossref_primary_10_1016_j_metabol_2009_10_023
crossref_primary_10_1111_liv_12534
crossref_primary_10_1172_jci_insight_136277
crossref_primary_10_1016_j_bcp_2019_03_008
crossref_primary_10_1016_j_bbagen_2013_04_006
crossref_primary_10_1152_ajpcell_00190_2011
crossref_primary_10_1016_j_pharmthera_2016_06_004
crossref_primary_10_14814_phy2_12864
crossref_primary_10_1007_s00421_022_05107_x
crossref_primary_10_1074_jbc_M704817200
crossref_primary_10_2337_db06_1596
crossref_primary_10_1016_S0003_4266_12_70009_4
crossref_primary_10_1073_pnas_1516219112
crossref_primary_10_1016_j_numecd_2020_11_019
crossref_primary_10_1155_2015_921274
crossref_primary_10_18632_aging_102179
crossref_primary_10_1016_j_bbrc_2010_06_034
crossref_primary_10_2337_db19_1153
crossref_primary_10_1139_H09_008
crossref_primary_10_1016_j_jid_2017_04_025
crossref_primary_10_1016_j_bcp_2023_115717
crossref_primary_10_1016_j_ygcen_2017_07_023
crossref_primary_10_1152_jn_00295_2021
crossref_primary_10_3390_antiox12020385
crossref_primary_10_1371_journal_pone_0134087
crossref_primary_10_1016_j_fbio_2024_105148
crossref_primary_10_1155_2012_759583
crossref_primary_10_1177_0748730411414168
crossref_primary_10_1016_j_lfs_2009_04_002
crossref_primary_10_1152_physiol_00006_2017
crossref_primary_10_2337_db23_0454
crossref_primary_10_1519_JSC_0000000000001205
crossref_primary_10_3390_jcm10102072
crossref_primary_10_1074_jbc_M113_489674
crossref_primary_10_1093_cvr_cvp418
crossref_primary_10_1007_s10522_018_9768_2
crossref_primary_10_1161_CIRCULATIONAHA_107_702795
crossref_primary_10_1186_2046_2395_2_13
crossref_primary_10_1074_jbc_M110_131615
crossref_primary_10_1016_j_atherosclerosis_2020_02_001
crossref_primary_10_1016_j_expneurol_2020_113593
crossref_primary_10_1111_jcpt_12808
crossref_primary_10_1158_1078_0432_CCR_11_3221
crossref_primary_10_1074_jbc_C116_761049
crossref_primary_10_1161_CIRCRESAHA_117_305624
crossref_primary_10_1002_dta_1587
crossref_primary_10_1016_j_mito_2021_08_008
crossref_primary_10_1002_alz_14275
crossref_primary_10_1016_j_molmet_2013_05_001
crossref_primary_10_1186_s12906_018_2319_1
crossref_primary_10_1093_hmg_ddp183
crossref_primary_10_1074_jbc_M611214200
crossref_primary_10_1016_j_tem_2008_10_001
crossref_primary_10_1016_j_scispo_2020_03_006
crossref_primary_10_1016_j_bbadis_2024_167302
crossref_primary_10_1016_j_cbpb_2010_07_001
crossref_primary_10_1186_s12986_024_00834_8
crossref_primary_10_7554_eLife_73718
crossref_primary_10_1016_j_heliyon_2023_e12987
crossref_primary_10_1016_j_cbd_2014_02_001
crossref_primary_10_1007_s13679_014_0091_1
crossref_primary_10_1155_2016_2405176
crossref_primary_10_2337_db11_0121
crossref_primary_10_1016_j_expneurol_2020_113332
crossref_primary_10_1371_journal_pgen_1000543
crossref_primary_10_1111_j_1476_5381_2010_01105_x
crossref_primary_10_1042_BCJ20170967
crossref_primary_10_3390_cells9122621
crossref_primary_10_1371_journal_pone_0048455
crossref_primary_10_15857_ksep_2019_28_4_365
crossref_primary_10_1530_JME_13_0201
crossref_primary_10_1016_j_bbadis_2014_02_010
crossref_primary_10_1016_j_gene_2020_144516
crossref_primary_10_1016_j_mito_2010_08_004
crossref_primary_10_3390_antiox8120603
crossref_primary_10_1074_jbc_M109_022749
crossref_primary_10_1042_BJ20090928
crossref_primary_10_1016_j_beem_2008_10_002
crossref_primary_10_2337_db07_1238
crossref_primary_10_1007_s10522_015_9585_9
crossref_primary_10_1016_j_neulet_2019_134431
crossref_primary_10_1016_j_neuroscience_2011_04_019
crossref_primary_10_1074_jbc_M808818200
crossref_primary_10_1016_j_bcp_2010_03_013
crossref_primary_10_1155_2017_6561701
crossref_primary_10_1371_journal_pone_0145162
crossref_primary_10_1038_s41598_017_09148_7
crossref_primary_10_1155_2019_8973076
crossref_primary_10_1007_s12035_017_0592_5
crossref_primary_10_1371_journal_pone_0010778
crossref_primary_10_3390_biology10010031
crossref_primary_10_1139_H08_074
crossref_primary_10_1152_ajpendo_00681_2010
crossref_primary_10_1016_j_bbapap_2009_10_022
crossref_primary_10_1007_s10545_015_9819_7
crossref_primary_10_1007_s00438_017_1385_2
crossref_primary_10_1038_s41598_020_59244_4
crossref_primary_10_1016_j_canlet_2014_04_001
crossref_primary_10_1080_15548627_2019_1659612
crossref_primary_10_1128_MCB_01710_13
crossref_primary_10_1371_journal_pone_0021660
crossref_primary_10_1038_onc_2012_529
crossref_primary_10_1139_cjz_2013_0267
crossref_primary_10_1371_journal_pone_0028290
crossref_primary_10_46235_1028_7221_348_PIH
crossref_primary_10_1007_s40519_018_0622_y
crossref_primary_10_1002_cbf_3006
crossref_primary_10_1016_j_tem_2015_06_008
crossref_primary_10_1007_s11010_008_9888_0
crossref_primary_10_1016_j_imbio_2017_03_001
crossref_primary_10_1016_j_cmet_2010_11_008
crossref_primary_10_1074_mcp_M700198_MCP200
crossref_primary_10_4161_cc_22376
crossref_primary_10_1073_pnas_1016089107
crossref_primary_10_1371_journal_pone_0011606
crossref_primary_10_3390_ph15040469
crossref_primary_10_1016_j_arr_2009_03_003
crossref_primary_10_1186_s13395_016_0114_6
crossref_primary_10_1016_j_yexcr_2019_111672
crossref_primary_10_1210_en_2008_0816
crossref_primary_10_1016_j_cmet_2010_11_011
crossref_primary_10_1016_j_pcd_2018_07_005
crossref_primary_10_1007_s11064_019_02794_5
crossref_primary_10_3892_etm_2017_5375
crossref_primary_10_1155_2016_9039754
crossref_primary_10_1002_ijc_30802
crossref_primary_10_2337_db12_1107
crossref_primary_10_1124_mol_119_116806
crossref_primary_10_1016_j_cmet_2011_04_011
crossref_primary_10_1038_s41467_024_51780_1
crossref_primary_10_1186_s13045_018_0648_7
crossref_primary_10_1089_scd_2012_0466
crossref_primary_10_1161_ATVBAHA_108_181636
crossref_primary_10_3892_ijmm_2024_5467
crossref_primary_10_1371_journal_pone_0030983
crossref_primary_10_1177_1535370216657900
crossref_primary_10_1016_j_isci_2023_106511
crossref_primary_10_1186_s12944_020_01261_3
crossref_primary_10_1016_j_exger_2013_08_004
crossref_primary_10_1016_j_molcel_2012_10_027
crossref_primary_10_1016_j_biocel_2022_106361
crossref_primary_10_1016_j_febslet_2008_01_033
crossref_primary_10_1186_s12964_022_00830_6
crossref_primary_10_1007_s00018_012_1043_0
crossref_primary_10_1186_s43042_021_00200_w
crossref_primary_10_1016_j_bbagen_2016_01_017
crossref_primary_10_1113_JP270541
crossref_primary_10_1113_JP270543
crossref_primary_10_1002_ame2_12058
crossref_primary_10_1002_jbt_70043
crossref_primary_10_1093_cvr_cvy258
crossref_primary_10_3389_fphys_2024_1496870
crossref_primary_10_1007_s00125_013_2911_3
crossref_primary_10_1210_me_2009_0276
crossref_primary_10_1371_journal_pone_0010962
crossref_primary_10_3389_fimmu_2022_929520
crossref_primary_10_3390_cells8040335
crossref_primary_10_1016_j_bbabio_2015_05_017
crossref_primary_10_1371_journal_pone_0010970
crossref_primary_10_1016_j_mad_2016_12_005
crossref_primary_10_1016_j_nbd_2016_11_001
crossref_primary_10_1096_fj_201902476R
crossref_primary_10_1186_s12944_018_0740_6
crossref_primary_10_2337_db12_0291
crossref_primary_10_3390_ijms12117554
crossref_primary_10_1088_1742_6596_1279_1_012011
crossref_primary_10_1111_obr_12958
crossref_primary_10_1016_j_cmet_2007_08_003
crossref_primary_10_1080_09168451_2015_1062715
crossref_primary_10_1152_ajpregu_00806_2010
crossref_primary_10_1186_1743_7075_7_36
crossref_primary_10_3892_ijmm_2016_2487
crossref_primary_10_1152_physiol_00039_2014
crossref_primary_10_1126_scisignal_2000143
crossref_primary_10_1016_j_bbrc_2012_11_111
crossref_primary_10_1080_02640414_2023_2195737
crossref_primary_10_1136_thoraxjnl_2016_208964
crossref_primary_10_1080_23744235_2023_2228403
crossref_primary_10_3390_ijms15058713
crossref_primary_10_1016_j_nbd_2012_08_015
crossref_primary_10_1038_s41598_020_61160_6
crossref_primary_10_1038_srep40544
crossref_primary_10_1007_s40279_018_0894_4
crossref_primary_10_1152_ajpendo_00648_2009
crossref_primary_10_1016_j_yexcr_2018_06_016
crossref_primary_10_1056_NEJMcibr1005397
crossref_primary_10_1128_MCB_06575_11
crossref_primary_10_1111_j_1582_4934_2008_00404_x
crossref_primary_10_1128_MCB_01479_07
crossref_primary_10_1038_modpathol_2015_101
crossref_primary_10_1002_mnfr_202000196
crossref_primary_10_1002_ajpa_22661
crossref_primary_10_4161_cc_28189
crossref_primary_10_3389_fcell_2022_887764
crossref_primary_10_1111_j_1365_2036_2010_04366_x
crossref_primary_10_1016_j_jff_2014_11_027
crossref_primary_10_1080_13880209_2020_1756349
crossref_primary_10_1002_hep_21991
crossref_primary_10_1186_2193_1801_3_2
crossref_primary_10_1016_j_freeradbiomed_2011_08_036
crossref_primary_10_1074_jbc_M109_070169
crossref_primary_10_1093_hmg_ddm045
crossref_primary_10_3934_molsci_2016_4_479
crossref_primary_10_1186_s13195_018_0342_6
crossref_primary_10_3892_or_2014_2974
crossref_primary_10_1016_j_yjmcc_2018_01_005
crossref_primary_10_1016_j_ecoenv_2024_115955
crossref_primary_10_1016_j_raem_2017_06_002
crossref_primary_10_1101_gad_180406_111
crossref_primary_10_1111_j_1471_4159_2011_07184_x
crossref_primary_10_2147_JIR_S441597
crossref_primary_10_1111_j_1478_3231_2010_02423_x
crossref_primary_10_1016_j_cels_2022_08_003
crossref_primary_10_1016_j_mito_2010_12_013
crossref_primary_10_1186_s40001_024_02248_x
crossref_primary_10_1016_j_freeradbiomed_2017_12_030
crossref_primary_10_3389_fphys_2015_00325
crossref_primary_10_2337_db12_0314
crossref_primary_10_1021_acs_chemrestox_1c00340
crossref_primary_10_3390_ijms21061935
crossref_primary_10_1089_jmf_2015_3496
crossref_primary_10_1007_s00441_014_1857_1
crossref_primary_10_1080_26895293_2022_2156622
crossref_primary_10_1096_fj_12_208041
crossref_primary_10_1210_en_2011_1502
crossref_primary_10_1074_jbc_M704332200
crossref_primary_10_1111_j_1742_4658_2009_07516_x
crossref_primary_10_1371_journal_pone_0124727
crossref_primary_10_1074_jbc_M109_052506
crossref_primary_10_1152_ajpheart_00635_2015
crossref_primary_10_1210_en_2017_00872
crossref_primary_10_1002_jcsm_12753
crossref_primary_10_1002_stem_3425
crossref_primary_10_1016_j_cbpa_2019_04_011
crossref_primary_10_1172_JCI87927
crossref_primary_10_1002_oby_22061
crossref_primary_10_1016_j_jnutbio_2017_11_012
crossref_primary_10_2337_db16_0227
crossref_primary_10_1016_j_cmet_2011_02_019
crossref_primary_10_1530_JOE_17_0367
crossref_primary_10_1210_clinem_dgz104
crossref_primary_10_2337_db13_1283
crossref_primary_10_1016_j_mito_2010_05_012
crossref_primary_10_1186_1476_511X_10_246
crossref_primary_10_3803_EnM_2015_30_3_235
crossref_primary_10_1155_2016_5465804
crossref_primary_10_1093_cvr_cvr155
crossref_primary_10_1152_ajpcell_00368_2011
crossref_primary_10_1152_ajpendo_90292_2008
crossref_primary_10_1074_jbc_M110_202390
crossref_primary_10_1038_nm1106_1239
crossref_primary_10_18632_oncotarget_3848
crossref_primary_10_1186_1752_0509_3_31
crossref_primary_10_1002_jcp_27175
crossref_primary_10_1152_ajpendo_00512_2010
crossref_primary_10_1002_mrd_23269
crossref_primary_10_1186_1471_2202_15_29
crossref_primary_10_1113_JP280748
crossref_primary_10_2337_db15_1500
crossref_primary_10_3390_ijms21010162
crossref_primary_10_1155_2016_5152029
crossref_primary_10_3390_ijms19051327
crossref_primary_10_1007_s11427_015_4833_4
crossref_primary_10_1016_j_freeradbiomed_2014_05_016
crossref_primary_10_1038_nrd4023
crossref_primary_10_1371_journal_pone_0155646
crossref_primary_10_1073_pnas_1121060109
crossref_primary_10_1111_bph_14935
crossref_primary_10_1152_ajpregu_00395_2016
crossref_primary_10_1210_me_2016_1036
crossref_primary_10_1016_j_febslet_2009_11_026
crossref_primary_10_1096_fj_202300563R
crossref_primary_10_3109_07420528_2015_1050726
crossref_primary_10_3390_nu15010174
crossref_primary_10_1152_ajplung_00305_2020
crossref_primary_10_1016_j_cardfail_2014_03_007
crossref_primary_10_1051_medsci_200723111034
crossref_primary_10_3803_EnM_2016_31_2_328
crossref_primary_10_1371_journal_pone_0107109
crossref_primary_10_1016_j_biopha_2023_114847
crossref_primary_10_1016_j_neuroscience_2010_04_063
crossref_primary_10_1161_CIRCHEARTFAILURE_114_001469
crossref_primary_10_1016_j_tem_2012_06_006
crossref_primary_10_1016_j_bbagen_2009_07_031
crossref_primary_10_1007_s11010_024_05084_z
crossref_primary_10_1172_JCI74668
crossref_primary_10_1007_s00125_017_4401_5
crossref_primary_10_1016_j_brainres_2016_04_076
crossref_primary_10_1371_journal_pgen_0030188
crossref_primary_10_2337_db08_1571
crossref_primary_10_1002_jcb_26748
crossref_primary_10_3389_fphys_2022_997619
crossref_primary_10_1038_s44318_024_00335_7
crossref_primary_10_3389_fonc_2020_00820
crossref_primary_10_1016_j_toxicon_2019_11_009
crossref_primary_10_1210_en_2007_1447
crossref_primary_10_1155_2013_635203
crossref_primary_10_1016_j_bbrc_2015_04_020
crossref_primary_10_1002_jnr_22225
crossref_primary_10_1002_jnr_22469
crossref_primary_10_1177_1010428317695031
crossref_primary_10_1042_BSR20150076
crossref_primary_10_2337_db12_1665
crossref_primary_10_1038_cr_2010_4
crossref_primary_10_1007_s00239_010_9347_x
crossref_primary_10_1007_s11064_016_2110_y
crossref_primary_10_1016_j_cmet_2011_03_019
crossref_primary_10_3390_ani10091715
crossref_primary_10_1517_13543781003640169
crossref_primary_10_1016_j_bbrc_2022_08_004
crossref_primary_10_18632_aging_103088
crossref_primary_10_1210_en_2011_1367
crossref_primary_10_3390_ijms19051529
crossref_primary_10_2337_db12_0703
crossref_primary_10_1016_j_cmet_2015_08_005
crossref_primary_10_1016_j_omtm_2021_06_010
crossref_primary_10_1152_japplphysiol_01110_2017
crossref_primary_10_1016_j_brainres_2008_11_023
crossref_primary_10_1155_2016_4085727
crossref_primary_10_3390_ijms18071393
crossref_primary_10_1007_s00726_016_2202_7
crossref_primary_10_1155_2014_701758
crossref_primary_10_1186_s12950_017_0156_5
crossref_primary_10_1002_iub_608
crossref_primary_10_1016_j_bbadis_2008_09_006
crossref_primary_10_1016_j_metabol_2009_07_020
crossref_primary_10_1016_j_tem_2024_10_006
crossref_primary_10_1038_s41392_025_02141_x
crossref_primary_10_3390_biom10030361
crossref_primary_10_1038_ijo_2017_308
crossref_primary_10_1097_QAI_0000000000002180
crossref_primary_10_1111_ejn_14728
crossref_primary_10_2337_db09_0929
crossref_primary_10_1089_ars_2012_4615
crossref_primary_10_4162_nrp_2019_13_1_3
crossref_primary_10_1016_j_bcp_2015_06_020
crossref_primary_10_3390_cells9071708
crossref_primary_10_3733_ca_v065n03p136
crossref_primary_10_1111_apha_13402
crossref_primary_10_1371_journal_pone_0048925
crossref_primary_10_1007_s11581_018_2807_9
crossref_primary_10_1186_s12929_023_00975_7
crossref_primary_10_1371_journal_pone_0081724
crossref_primary_10_1016_j_bbamcr_2011_03_017
crossref_primary_10_1073_pnas_0909131106
crossref_primary_10_1016_j_cellsig_2011_04_010
crossref_primary_10_1016_j_bbabio_2009_02_023
crossref_primary_10_1186_2049_3002_1_22
crossref_primary_10_1080_15592294_2019_1618164
crossref_primary_10_1016_j_mam_2010_02_008
crossref_primary_10_3389_fphar_2024_1486717
crossref_primary_10_1155_2013_342561
crossref_primary_10_1007_s10555_019_09794_5
crossref_primary_10_3390_biomedicines8100390
crossref_primary_10_3389_fnmol_2021_588230
crossref_primary_10_1371_journal_pone_0031272
crossref_primary_10_1002_em_20571
crossref_primary_10_1089_rej_2017_1975
crossref_primary_10_1113_jphysiol_2010_198598
crossref_primary_10_1007_s12192_022_01282_0
crossref_primary_10_1517_14728222_2010_528395
crossref_primary_10_1152_ajpendo_00755_2009
crossref_primary_10_1016_j_pharmthera_2023_108531
crossref_primary_10_1002_jcp_24978
crossref_primary_10_1093_hmg_dds177
crossref_primary_10_1681_ASN_2010111154
crossref_primary_10_1016_j_phrs_2022_106481
crossref_primary_10_1093_hmg_ddr089
crossref_primary_10_12998_wjcc_v7_i15_2065
crossref_primary_10_1002_jcp_24986
crossref_primary_10_1016_j_pnpbp_2015_06_012
crossref_primary_10_1038_ncomms1036
crossref_primary_10_1242_dev_136382
crossref_primary_10_3389_fcell_2020_00530
crossref_primary_10_1159_000345689
crossref_primary_10_1080_09712119_2021_1889563
crossref_primary_10_1093_beheco_arx129
crossref_primary_10_1371_journal_pone_0002890
crossref_primary_10_1016_j_semcdb_2019_09_001
crossref_primary_10_1007_s12035_020_02059_1
crossref_primary_10_1152_physiolgenomics_00030_2015
crossref_primary_10_1016_j_biocel_2017_09_020
crossref_primary_10_1016_j_bbrc_2015_08_092
crossref_primary_10_1016_j_metabol_2018_03_005
crossref_primary_10_3390_ijms12107199
crossref_primary_10_1007_s00246_011_9889_8
crossref_primary_10_1007_s00360_009_0398_5
crossref_primary_10_3389_fnagi_2018_00246
crossref_primary_10_1113_JP278853
crossref_primary_10_1007_s10616_018_0237_1
crossref_primary_10_1016_j_nurt_2008_05_003
crossref_primary_10_3390_nu13082596
crossref_primary_10_3390_biom11030404
crossref_primary_10_1074_jbc_M703634200
crossref_primary_10_3892_mmr_2018_8433
crossref_primary_10_1161_01_RES_0000259591_97107_6c
crossref_primary_10_3389_fendo_2021_799081
crossref_primary_10_1016_j_heares_2012_11_007
crossref_primary_10_1096_fj_201802512RR
crossref_primary_10_1016_j_abb_2009_09_011
crossref_primary_10_3390_cells8070662
crossref_primary_10_1113_jphysiol_2012_240077
crossref_primary_10_1093_hmg_dds144
crossref_primary_10_29219_fnr_v65_5492
crossref_primary_10_1016_j_phrs_2024_107484
crossref_primary_10_1089_met_2016_0108
crossref_primary_10_1016_j_celrep_2015_12_086
crossref_primary_10_1016_j_mito_2015_10_001
crossref_primary_10_1093_cvr_cvv050
crossref_primary_10_3390_antiox9080664
crossref_primary_10_1093_nar_gks025
crossref_primary_10_1111_j_1742_4658_2009_07302_x
crossref_primary_10_1152_ajpendo_00581_2012
crossref_primary_10_1007_s00774_020_01100_6
crossref_primary_10_1371_journal_pone_0010025
crossref_primary_10_1016_j_biopen_2015_10_002
crossref_primary_10_2337_db09_1402
crossref_primary_10_1371_journal_pone_0001535
crossref_primary_10_1093_brain_awad202
crossref_primary_10_3389_fnagi_2021_649929
crossref_primary_10_1186_1471_2350_12_69
crossref_primary_10_1186_s13293_018_0164_z
crossref_primary_10_31083_j_fbl2703096
crossref_primary_10_1016_j_yjmcc_2016_08_013
crossref_primary_10_3109_10799891003641074
crossref_primary_10_3109_07420528_2015_1042582
crossref_primary_10_3390_ijms22115769
crossref_primary_10_1042_BSR20181767
crossref_primary_10_3389_fcdhc_2022_982665
crossref_primary_10_1002_ar_23644
crossref_primary_10_1073_pnas_1207605109
crossref_primary_10_1056_NEJMcibr0802500
crossref_primary_10_1016_j_exger_2023_112203
crossref_primary_10_1074_jbc_M114_589325
crossref_primary_10_1016_j_ajpath_2012_09_003
crossref_primary_10_1016_j_maturitas_2011_12_021
crossref_primary_10_1016_j_febslet_2007_11_015
crossref_primary_10_1016_j_febslet_2007_11_017
crossref_primary_10_1074_jbc_M109_008797
crossref_primary_10_3389_fphys_2022_989547
crossref_primary_10_3390_ijms22031059
crossref_primary_10_3945_jn_108_098269
crossref_primary_10_1016_j_yexcr_2017_08_017
crossref_primary_10_1016_j_endmts_2020_100067
crossref_primary_10_1128_MCB_01669_08
crossref_primary_10_1093_hmg_ddt247
crossref_primary_10_7717_peerj_12856
crossref_primary_10_1016_j_stem_2024_02_004
crossref_primary_10_3389_fphys_2018_01957
crossref_primary_10_1016_j_lfs_2022_120638
crossref_primary_10_1016_j_neurot_2024_e00515
crossref_primary_10_1016_j_cell_2012_08_034
crossref_primary_10_14336_AD_2017_0831
crossref_primary_10_1152_physrev_00054_2021
crossref_primary_10_1042_BST20160071C
crossref_primary_10_1016_j_celrep_2013_07_019
crossref_primary_10_1016_j_bbamcr_2016_08_007
crossref_primary_10_1152_ajpendo_00487_2011
crossref_primary_10_1007_s13238_017_0409_3
crossref_primary_10_1038_nrm3293
crossref_primary_10_1111_j_1471_4159_2010_06631_x
crossref_primary_10_1186_1743_8977_9_40
crossref_primary_10_1042_CS20090533
crossref_primary_10_1096_fj_201701264R
crossref_primary_10_3389_fphys_2020_615038
crossref_primary_10_1186_1471_2156_13_41
crossref_primary_10_1016_j_bbamcr_2014_04_004
crossref_primary_10_1016_j_cmet_2017_04_029
crossref_primary_10_1371_journal_pgen_1009488
crossref_primary_10_1016_j_exger_2010_01_011
crossref_primary_10_1210_me_2015_1005
crossref_primary_10_1210_me_2011_0028
crossref_primary_10_1038_s41467_023_42690_9
crossref_primary_10_1196_annals_1427_006
crossref_primary_10_3390_ijms18091897
crossref_primary_10_1016_j_bbagen_2012_01_003
crossref_primary_10_3390_cells11192944
crossref_primary_10_1007_s12576_018_0649_x
crossref_primary_10_1016_j_cmet_2008_07_006
crossref_primary_10_1016_j_neuroscience_2020_05_015
crossref_primary_10_1017_S0029665119000533
crossref_primary_10_1016_j_mehy_2020_109775
crossref_primary_10_1016_j_mad_2023_111826
crossref_primary_10_3945_jn_114_196113
crossref_primary_10_1111_ejn_13157
crossref_primary_10_1038_celldisc_2017_39
crossref_primary_10_1093_hmg_ddp093
crossref_primary_10_1113_jphysiol_2007_149948
crossref_primary_10_1016_j_jpba_2013_10_022
crossref_primary_10_1093_braincomms_fcab252
crossref_primary_10_1152_japplphysiol_00737_2009
crossref_primary_10_1016_j_cmet_2013_12_003
crossref_primary_10_1038_s41598_017_13102_y
crossref_primary_10_1016_j_mce_2014_12_027
crossref_primary_10_1016_j_crfs_2024_100683
crossref_primary_10_1186_s12864_017_4292_3
crossref_primary_10_1039_D2FO03673H
crossref_primary_10_1152_physrev_00017_2022
crossref_primary_10_1021_acsomega_3c07480
crossref_primary_10_3389_fphys_2014_00479
crossref_primary_10_3233_JAD_151105
crossref_primary_10_1016_j_tem_2011_09_007
crossref_primary_10_1038_ejcn_2017_68
crossref_primary_10_18632_oncotarget_10685
crossref_primary_10_1038_s41598_017_14868_x
crossref_primary_10_1016_j_jhep_2012_10_024
crossref_primary_10_1007_s11926_008_0038_1
crossref_primary_10_1016_j_tips_2009_03_006
crossref_primary_10_1021_acs_jmedchem_0c00191
crossref_primary_10_1007_s13273_023_00424_4
crossref_primary_10_1016_j_physbeh_2013_03_022
crossref_primary_10_3390_ijms22115595
crossref_primary_10_1038_s41388_021_01707_7
crossref_primary_10_1074_jbc_M111_299727
crossref_primary_10_1158_2326_6066_CIR_18_0513
crossref_primary_10_1590_1414_431x202010465
crossref_primary_10_1155_2008_314974
crossref_primary_10_3390_ijms20071707
crossref_primary_10_2337_db18_0626
crossref_primary_10_1089_thy_2007_0249
crossref_primary_10_1038_s41591_018_0019_5
crossref_primary_10_1016_j_atherosclerosis_2010_07_002
crossref_primary_10_1073_pnas_0904187106
crossref_primary_10_1681_ASN_2017020130
crossref_primary_10_3390_md17090518
crossref_primary_10_1074_jbc_M110_217349
crossref_primary_10_1007_s11064_015_1765_0
crossref_primary_10_1074_jbc_M707389200
crossref_primary_10_1242_jcs_113662
crossref_primary_10_3389_fphys_2015_00051
crossref_primary_10_1016_j_bbamcr_2010_10_007
crossref_primary_10_14814_phy2_14526
crossref_primary_10_1016_j_freeradbiomed_2023_07_012
crossref_primary_10_1089_thy_2007_0254
crossref_primary_10_1097_MCO_0b013e3282f0dbfb
crossref_primary_10_1161_CIRCRESAHA_122_320395
crossref_primary_10_1039_C4FO00340C
crossref_primary_10_3389_fcvm_2020_00056
crossref_primary_10_1093_gerona_glv070
crossref_primary_10_1016_j_bbalip_2018_05_004
crossref_primary_10_1007_s00204_014_1401_9
crossref_primary_10_3390_ijms23179575
crossref_primary_10_1002_rcm_6421
crossref_primary_10_1016_j_bbadis_2009_07_014
crossref_primary_10_1016_j_febslet_2010_05_030
crossref_primary_10_15857_ksep_2012_21_4_435
crossref_primary_10_1152_ajpendo_90352_2008
crossref_primary_10_1007_s00726_021_03028_1
crossref_primary_10_1016_j_meatsci_2011_05_015
crossref_primary_10_1016_j_preteyeres_2024_101306
crossref_primary_10_1371_journal_pbio_1001603
crossref_primary_10_1155_2020_3656419
crossref_primary_10_1007_s40200_019_00405_2
crossref_primary_10_1016_j_cmet_2010_02_006
crossref_primary_10_1016_j_semnephrol_2016_01_005
crossref_primary_10_1152_ajplung_00392_2014
crossref_primary_10_1194_jlr_M033415
crossref_primary_10_1155_2012_857142
crossref_primary_10_1007_s00726_015_2161_4
crossref_primary_10_1096_fj_07_8520com
crossref_primary_10_1007_s00421_016_3480_1
crossref_primary_10_1016_j_ajpath_2014_12_009
crossref_primary_10_3109_07420528_2012_658127
crossref_primary_10_1186_s12944_020_01220_y
crossref_primary_10_1113_jphysiol_2008_160150
crossref_primary_10_1172_JCI58662
crossref_primary_10_1016_j_tox_2015_01_001
crossref_primary_10_1016_j_mrfmmm_2014_09_005
crossref_primary_10_1096_fj_13_236331
crossref_primary_10_1007_s10522_014_9515_2
crossref_primary_10_1089_ars_2008_2241
crossref_primary_10_1042_CS20140688
crossref_primary_10_1097_BOR_0b013e3282f20347
crossref_primary_10_1016_j_jnutbio_2013_08_014
crossref_primary_10_3390_ijms23020786
crossref_primary_10_1111_cbdd_13506
crossref_primary_10_1002_cbf_3111
crossref_primary_10_1210_en_2012_1334
crossref_primary_10_3390_nu10070836
crossref_primary_10_1155_2008_542694
crossref_primary_10_1002_rmb2_12428
crossref_primary_10_1016_j_ymgme_2018_10_004
crossref_primary_10_1007_s11906_022_01184_7
crossref_primary_10_1016_j_cryobiol_2020_02_010
crossref_primary_10_18632_aging_101131
crossref_primary_10_1038_nature11040
crossref_primary_10_1093_toxsci_kfae113
crossref_primary_10_1111_jcmm_17189
crossref_primary_10_1113_jphysiol_2014_283820
crossref_primary_10_1016_j_tox_2018_11_012
crossref_primary_10_3945_ajcn_112_046417
crossref_primary_10_1016_j_prostaglandins_2016_07_004
crossref_primary_10_1172_JCI66062
crossref_primary_10_1210_er_2006_0041
crossref_primary_10_1016_j_abb_2019_03_019
crossref_primary_10_1007_BF03195694
crossref_primary_10_1152_ajpendo_00339_2020
crossref_primary_10_1155_2012_768304
crossref_primary_10_5713_ajas_15_0794
crossref_primary_10_1016_j_freeradbiomed_2012_09_014
crossref_primary_10_1016_j_yjmcc_2012_12_007
crossref_primary_10_1177_0748730411401579
crossref_primary_10_1016_j_freeradbiomed_2017_08_014
crossref_primary_10_1681_ASN_2010060643
crossref_primary_10_1016_j_bbabio_2008_04_024
crossref_primary_10_1074_jbc_M706986200
crossref_primary_10_1016_j_reprotox_2014_09_004
crossref_primary_10_1111_j_1440_1681_2009_05311_x
crossref_primary_10_1186_s12920_022_01428_0
crossref_primary_10_1016_j_jff_2023_105825
crossref_primary_10_1038_nm_4057
crossref_primary_10_1016_j_cell_2011_10_017
crossref_primary_10_1002_jnr_22068
crossref_primary_10_3389_fphar_2023_1117337
crossref_primary_10_1016_j_nbd_2018_09_016
crossref_primary_10_1016_j_bbrc_2011_04_012
crossref_primary_10_1016_j_iliver_2023_01_002
crossref_primary_10_1242_jcs_072272
crossref_primary_10_1074_jbc_M111_227496
crossref_primary_10_1093_hmg_ddt603
crossref_primary_10_1152_physiolgenomics_90217_2008
crossref_primary_10_1038_s41598_022_10521_4
Cites_doi 10.1210/en.2006-0070
10.1074/jbc.M210486200
10.1038/35093131
10.1210/er.2004-0018
10.1038/ng1180
10.1128/MCB.20.7.2411-2422.2000
10.1016/j.cell.2004.09.013
10.1038/nature01667
10.1074/jbc.M206324200
10.1161/01.RES.0000141774.29937.e3
10.1016/0092-8674(94)90006-X
10.1172/JCI27794
10.1073/pnas.1232352100
10.1172/JCI21752
10.1073/pnas.1032913100
10.1042/bj20030200
10.1074/jbc.M201134200
10.1074/jbc.M405423200
10.1016/S0140-6736(06)68970-8
10.1152/ajpendo.2001.281.6.E1340
10.1073/pnas.0308686101
10.1038/oby.2003.163
10.1126/science.286.5443.1368
10.1096/fj.02-0367com
10.1073/pnas.0401401101
10.1038/nature00904
10.1101/gad.1152204
10.1146/annurev.cellbio.16.1.145
10.1074/jbc.C100631200
10.1074/jbc.M301850200
10.1016/S1097-2765(01)00390-2
10.1038/35093050
10.1016/j.cell.2005.06.040
10.1073/pnas.252625599
10.1172/JCI21889
10.1172/JCI24405
10.1074/jbc.M600050200
10.1101/gad.1395406
10.1128/MCB.21.11.3738-3749.2001
10.1007/s00125-006-0268-6
10.1073/pnas.171184698
10.1152/jappl.2000.88.6.2219
10.1126/science.1104343
10.1161/01.RES.0000117088.36577.EB
10.1016/S1097-2765(00)00031-9
10.1016/j.cell.2006.06.010
10.1038/sj.ijo.0802482
10.1126/science.1079368
10.1016/j.cmet.2006.01.001
10.1128/MCB.24.7.3057-3067.2004
10.1074/jbc.M303643200
10.1172/JCI25151
10.1016/j.ddstr.2005.05.001
10.1073/pnas.061035098
10.1016/j.cell.2004.11.043
10.1016/j.cmet.2006.04.013
10.1038/nature03354
10.2337/diabetes.52.3.642
10.1074/jbc.M512636200
10.1016/j.cmet.2005.05.004
10.1038/sj.ijo.0802905
10.1016/j.cmet.2006.08.005
10.1016/S0092-8674(00)81410-5
10.1038/nm1044
10.1016/j.cell.2004.08.007
10.1038/nm1005-1049
10.1136/bmj.320.7250.1647
10.1172/JCI10268
10.1016/S0092-8674(00)80611-X
10.1016/j.cmet.2005.08.010
10.1371/journal.pbio.0030101
10.1016/j.cmet.2005.03.002
10.1210/er.2002-0012
10.1006/geno.1999.5977
10.1038/35007527
10.1073/pnas.0730870100
10.1172/JCI200317741
10.1073/pnas.0337639100
10.1101/gad.8.10.1224
10.1016/S1534-5807(03)00170-9
10.1101/gad.1295005
10.1016/S1097-2765(03)00391-5
10.1074/jbc.M305235200
10.1074/jbc.M205641200
10.1073/pnas.2135217100
10.1073/pnas.0603615103
ContentType Journal Article
Copyright Copyright © 2006 by The Endocrine Society 2006
Copyright © 2006 by The Endocrine Society
Copyright_xml – notice: Copyright © 2006 by The Endocrine Society 2006
– notice: Copyright © 2006 by The Endocrine Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
8FD
C1K
FR3
H94
K9.
P64
RC3
7X8
DOI 10.1210/er.2006-0037
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Neurosciences Abstracts
MEDLINE
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1945-7189
EndPage 735
ExternalDocumentID 17018837
10_1210_er_2006_0037
00003599-200612000-00005
10.1210/er.2006-0037
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: DK61562
– fundername: NIDDK NIH HHS
  grantid: DK54477
GroupedDBID ---
-~X
.55
.GJ
.XZ
0R~
0VX
18M
1TH
2WC
4.4
48X
53G
5GY
5RE
5RS
5YH
AABZA
AACZT
AAIMJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
ABEJV
ABJNI
ABMNT
ABNHQ
ABOCM
ABPQP
ABPTD
ABQNK
ABWST
ABXVV
ACGFO
ACGFS
ACIPB
ACPRK
ACYHN
ADBBV
ADGKP
ADGZP
ADHKW
ADQBN
ADRTK
ADVEK
AELWJ
AEMDU
AENEX
AENZO
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFOFC
AFRAH
AFXAL
AGINJ
AGQXC
AGUTN
AHMBA
AJEEA
ALMA_UNASSIGNED_HOLDINGS
APIBT
ARIXL
ATGXG
BAWUL
BAYMD
BCGUY
BCRHZ
BEYMZ
BSWAC
BTRTY
C1A
C45
CDBKE
CS3
DAKXR
DIK
E3Z
EBS
EJD
ENERS
F5P
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
HZ~
IH2
J5H
KBUDW
KOP
KQ8
KSI
KSN
L7B
M5~
MHKGH
MVM
N4W
NLBLG
NOMLY
NOYVH
NVLIB
O9-
OAUYM
ODMLO
ODZKP
OFXIZ
OGROG
OJZSN
OK1
OPAEJ
OVD
OVIDX
REU
ROX
ROZ
TEORI
TJX
TLC
TR2
W8F
WOQ
X7M
YHG
YOC
08P
29G
7X7
88E
8FI
8FJ
AAJQQ
AAPGJ
AAUQX
AAWDT
ABDFA
ABGNP
ABUWG
ABVGC
ABXZS
ACFRR
ACUTJ
ACVCV
ACZBC
ADMTO
ADNBA
AEMQT
AFFQV
AFKRA
AFYAG
AGKRT
AGMDO
AGORE
AHGBF
AHMMS
AI.
AJBYB
AJDVS
ALXQX
APJGH
AQDSO
AQKUS
AVNTJ
BENPR
BPHCQ
BVXVI
CCPQU
EIHJH
EMOBN
FYUFA
HMCUK
IAO
IHR
INH
ITC
M1P
MBLQV
NU-
OBFPC
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
TMA
UKHRP
VH1
X52
ZGI
ZXP
AAYXX
ADGHP
CITATION
3V.
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7QG
7QL
7QP
7T5
7TK
7TM
8FD
C1K
FR3
H94
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3785-9b8ce32fd1ed32a54c36b81a017c0987bca4b81d0be0c82f5577a0d8d977ad173
ISSN 0163-769X
IngestDate Thu Jul 10 17:39:49 EDT 2025
Fri Jul 11 15:38:55 EDT 2025
Mon Jun 30 14:26:30 EDT 2025
Wed Feb 19 01:44:00 EST 2025
Thu Apr 24 23:09:10 EDT 2025
Tue Jul 01 04:15:37 EDT 2025
Fri May 16 03:50:58 EDT 2025
Tue Nov 19 12:02:18 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3785-9b8ce32fd1ed32a54c36b81a017c0987bca4b81d0be0c82f5577a0d8d977ad173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Review-3
OpenAccessLink https://academic.oup.com/edrv/article-pdf/27/7/728/8862202/edrv0728.pdf
PMID 17018837
PQID 3129857761
PQPubID 2046247
PageCount 8
ParticipantIDs proquest_miscellaneous_68285310
proquest_miscellaneous_19513524
proquest_journals_3129857761
pubmed_primary_17018837
crossref_citationtrail_10_1210_er_2006_0037
crossref_primary_10_1210_er_2006_0037
wolterskluwer_health_00003599-200612000-00005
oup_primary_10_1210_er_2006-0037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20061201
2006-December
2006-12-01
2006-Dec
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 20061201
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cary
PublicationTitle Endocrine reviews
PublicationTitleAlternate Endocr Rev
PublicationYear 2006
Publisher Oxford University Press
Copyright by The Endocrine Society
Publisher_xml – name: Oxford University Press
– name: Copyright by The Endocrine Society
References Knutti (2019041122001671600_R48) 2001; 98
Leung (2019041122001671600_R63) 2004; 118
Mootha (2019041122001671600_R71) 2003; 34
Moore (2019041122001671600_R53) 2003; 278
Lehman (2019041122001671600_R85) 2000; 106
Lin (2019041122001671600_R16) 2005; 1
Puigserver (2019041122001671600_R47) 2001; 8
Lowell (2019041122001671600_R69) 2005; 307
Handschin (2019041122001671600_R37) 2003; 100
Michael (2019041122001671600_R27) 2001; 98
Wilson-Fritch (2019041122001671600_R76) 2004; 114
Hondares (2019041122001671600_R41) 2006; 147
Tontonoz (2019041122001671600_R2) 1994; 8
Kressler (2019041122001671600_R13) 2002; 277
Andersson (2019041122001671600_R14) 2001; 21
Borgius (2019041122001671600_R54) 2002; 277
Koo (2019041122001671600_R26) 2004; 10
Puigserver (2019041122001671600_R5) 1998; 92
Wu (2019041122001671600_R56) 2005; 26
Taubert (2019041122001671600_R17) 2006; 20
Yang (2019041122001671600_R75) 2003; 11
Morino (2019041122001671600_R73) 2005; 115
Schreiber (2019041122001671600_R11) 2004; 101
Wu (2019041122001671600_R7) 1999; 98
Lin (2019041122001671600_R31) 2003; 278
Phillips (2019041122001671600_R80) 2005; 11
Knutti (2019041122001671600_R9) 2000; 20
Mootha (2019041122001671600_R10) 2004; 101
Burgess (2019041122001671600_R25) 2006; 281
Lerin (2019041122001671600_R52) 2006; 3
Yoon (2019041122001671600_R21) 2001; 413
Daitoku (2019041122001671600_R43) 2003; 52
Bhalla (2019041122001671600_R55) 2004; 279
Lowell (2019041122001671600_R4) 2000; 404
Teyssier (2019041122001671600_R51) 2005; 19
Fan (2019041122001671600_R49) 2004; 18
Tontonoz (2019041122001671600_R3) 1994; 79
Puigserver (2019041122001671600_R42) 2003; 423
Semple (2019041122001671600_R74) 2004; 28
Handschin (2019041122001671600_R24) 2005; 122
Leone (2019041122001671600_R68) 2005; 3
Ling (2019041122001671600_R72) 2004; 114
Tiraby (2019041122001671600_R6) 2003; 278
Finck (2019041122001671600_R34) 2006; 116
Rodgers (2019041122001671600_R50) 2005; 434
Finck (2019041122001671600_R64) 2006; 4
Winder (2019041122001671600_R58) 2000; 88
Arany (2019041122001671600_R84) 2006; 103
Arany (2019041122001671600_R83) 2005; 1
Rhee (2019041122001671600_R23) 2006; 281
St-Pierre (2019041122001671600_R15) 2003; 278
Puigserver (2019041122001671600_R18) 1999; 286
Schapira (2019041122001671600_R66) 2006; 368
Lin (2019041122001671600_R30) 2005; 120
Lin (2019041122001671600_R12) 2002; 277
Thadani (2019041122001671600_R79) 2000; 320
Wallberg (2019041122001671600_R19) 2003; 12
Chan (2019041122001671600_R65) 2006; 125
Handschin (2019041122001671600_R78) 2005; 2
Rhee (2019041122001671600_R46) 2003; 100
Meirhaeghe (2019041122001671600_R60) 2003; 373
Huss (2019041122001671600_R82) 2005; 115
Monsalve (2019041122001671600_R20) 2000; 6
Yoon (2019041122001671600_R77) 2003; 5
Cao (2019041122001671600_R38) 2004; 24
Herzig (2019041122001671600_R22) 2001; 413
Lin (2019041122001671600_R28) 2002; 418
Lin (2019041122001671600_R29) 2004; 119
Patti (2019041122001671600_R70) 2003; 100
Nisoli (2019041122001671600_R39) 2003; 299
Huss (2019041122001671600_R81) 2004; 95
Zong (2019041122001671600_R57) 2002; 99
Soyal (2019041122001671600_R35) 2006; 49
Kamei (2019041122001671600_R62) 2003; 100
Puigserver (2019041122001671600_R36) 2005; 29
Rosen (2019041122001671600_R1) 2000; 16
Czubryt (2019041122001671600_R40) 2003; 100
Huss (2019041122001671600_R45) 2002; 277
Baar (2019041122001671600_R61) 2002; 16
Puigserver (2019041122001671600_R33) 2003; 24
Russell (2019041122001671600_R86) 2004; 94
Bergeron (2019041122001671600_R59) 2001; 281
Wang (2019041122001671600_R44) 2005; 2
Schon (2019041122001671600_R67) 2003; 111
Esterbauer (2019041122001671600_R8) 1999; 62
Wolfrum (2019041122001671600_R32) 2006; 3
References_xml – volume: 147
  start-page: 2829
  year: 2006
  ident: 2019041122001671600_R41
  article-title: Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1α gene transcription: an autoregulatory loop controls PGC-1α expression in adipocytes via peroxisome proliferator-activated receptor-γ coactivation.
  publication-title: Endocrinology
  doi: 10.1210/en.2006-0070
– volume: 278
  start-page: 17263
  year: 2003
  ident: 2019041122001671600_R53
  article-title: Upstream stimulatory factor represses the induction of carnitine palmitoyltransferase-Iβ expression by PGC-1.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M210486200
– volume: 413
  start-page: 179
  year: 2001
  ident: 2019041122001671600_R22
  article-title: CREB regulates hepatic gluconeogenesis through the coactivator PGC-1.
  publication-title: Nature
  doi: 10.1038/35093131
– volume: 26
  start-page: 393
  year: 2005
  ident: 2019041122001671600_R56
  article-title: Transcriptional regulation by steroid receptor coactivator phosphorylation.
  publication-title: Endocr Rev
  doi: 10.1210/er.2004-0018
– volume: 34
  start-page: 267
  year: 2003
  ident: 2019041122001671600_R71
  article-title: PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.
  publication-title: Nat Genet
  doi: 10.1038/ng1180
– volume: 20
  start-page: 2411
  year: 2000
  ident: 2019041122001671600_R9
  article-title: A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.20.7.2411-2422.2000
– volume: 119
  start-page: 121
  year: 2004
  ident: 2019041122001671600_R29
  article-title: Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice.
  publication-title: Cell
  doi: 10.1016/j.cell.2004.09.013
– volume: 423
  start-page: 550
  year: 2003
  ident: 2019041122001671600_R42
  article-title: Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction.
  publication-title: Nature
  doi: 10.1038/nature01667
– volume: 277
  start-page: 40265
  year: 2002
  ident: 2019041122001671600_R45
  article-title: Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. Identification of novel leucine-rich interaction motif within PGC-1α.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M206324200
– volume: 95
  start-page: 568
  year: 2004
  ident: 2019041122001671600_R81
  article-title: Nuclear receptor signaling and cardiac energetics.
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000141774.29937.e3
– volume: 79
  start-page: 1147
  year: 1994
  ident: 2019041122001671600_R3
  article-title: Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor.
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90006-X
– volume: 116
  start-page: 615
  year: 2006
  ident: 2019041122001671600_R34
  article-title: PGC-1 coactivators: inducible regulators of energy metabolism in health and disease.
  publication-title: J Clin Invest
  doi: 10.1172/JCI27794
– volume: 100
  start-page: 7111
  year: 2003
  ident: 2019041122001671600_R37
  article-title: An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1232352100
– volume: 114
  start-page: 1281
  year: 2004
  ident: 2019041122001671600_R76
  article-title: Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone.
  publication-title: J Clin Invest
  doi: 10.1172/JCI21752
– volume: 100
  start-page: 8466
  year: 2003
  ident: 2019041122001671600_R70
  article-title: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1032913100
– volume: 373
  start-page: 155
  year: 2003
  ident: 2019041122001671600_R60
  article-title: Characterization of the human, mouse and rat PGC1β (peroxisome-proliferator-activated receptor-γ co-activator 1 β) gene in vitro and in vivo.
  publication-title: Biochem J
  doi: 10.1042/bj20030200
– volume: 277
  start-page: 13918
  year: 2002
  ident: 2019041122001671600_R13
  article-title: The PGC-1-related protein PERC is a selective coactivator of estrogen receptor α.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M201134200
– volume: 279
  start-page: 45139
  year: 2004
  ident: 2019041122001671600_R55
  article-title: Ligand-activated pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator PGC-1α. Functional implications in hepatic cholesterol and glucose metabolism.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M405423200
– volume: 368
  start-page: 70
  year: 2006
  ident: 2019041122001671600_R66
  article-title: Mitochondrial disease.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68970-8
– volume: 281
  start-page: E1340
  year: 2001
  ident: 2019041122001671600_R59
  article-title: Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.2001.281.6.E1340
– volume: 101
  start-page: 6472
  year: 2004
  ident: 2019041122001671600_R11
  article-title: The estrogen-related receptor α (ERRα) functions in PPARγ coactivator 1α (PGC-1α)-induced mitochondrial biogenesis.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0308686101
– volume: 11
  start-page: 1182
  year: 2003
  ident: 2019041122001671600_R75
  article-title: Reduced expression of FOXC2 and brown adipogenic genes in human subjects with insulin resistance.
  publication-title: Obes Res
  doi: 10.1038/oby.2003.163
– volume: 286
  start-page: 1368
  year: 1999
  ident: 2019041122001671600_R18
  article-title: Activation of PPARγ coactivator-1 through transcription factor docking.
  publication-title: Science
  doi: 10.1126/science.286.5443.1368
– volume: 16
  start-page: 1879
  year: 2002
  ident: 2019041122001671600_R61
  article-title: Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1.
  publication-title: FASEB J
  doi: 10.1096/fj.02-0367com
– volume: 101
  start-page: 6570
  year: 2004
  ident: 2019041122001671600_R10
  article-title: Errα and Gabpa/b specify PGC-1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0401401101
– volume: 418
  start-page: 797
  year: 2002
  ident: 2019041122001671600_R28
  article-title: Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres.
  publication-title: Nature
  doi: 10.1038/nature00904
– volume: 18
  start-page: 278
  year: 2004
  ident: 2019041122001671600_R49
  article-title: Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α: modulation by p38 MAPK.
  publication-title: Genes Dev
  doi: 10.1101/gad.1152204
– volume: 16
  start-page: 145
  year: 2000
  ident: 2019041122001671600_R1
  article-title: Molecular regulation of adipogenesis.
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev.cellbio.16.1.145
– volume: 277
  start-page: 1645
  year: 2002
  ident: 2019041122001671600_R12
  article-title: Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C100631200
– volume: 278
  start-page: 26597
  year: 2003
  ident: 2019041122001671600_R15
  article-title: Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M301850200
– volume: 8
  start-page: 971
  year: 2001
  ident: 2019041122001671600_R47
  article-title: Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1.
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(01)00390-2
– volume: 413
  start-page: 131
  year: 2001
  ident: 2019041122001671600_R21
  article-title: Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1.
  publication-title: Nature
  doi: 10.1038/35093050
– volume: 122
  start-page: 505
  year: 2005
  ident: 2019041122001671600_R24
  article-title: Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.06.040
– volume: 99
  start-page: 15983
  year: 2002
  ident: 2019041122001671600_R57
  article-title: AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.252625599
– volume: 114
  start-page: 1518
  year: 2004
  ident: 2019041122001671600_R72
  article-title: Multiple environmental and genetic factors influence skeletal muscle PGC-1α and PGC-1β gene expression in twins.
  publication-title: J Clin Invest
  doi: 10.1172/JCI21889
– volume: 115
  start-page: 547
  year: 2005
  ident: 2019041122001671600_R82
  article-title: Mitochondrial energy metabolism in heart failure: a question of balance.
  publication-title: J Clin Invest
  doi: 10.1172/JCI24405
– volume: 281
  start-page: 19000
  year: 2006
  ident: 2019041122001671600_R25
  article-title: Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-deficient mice.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M600050200
– volume: 20
  start-page: 1137
  year: 2006
  ident: 2019041122001671600_R17
  article-title: A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans.
  publication-title: Genes Dev
  doi: 10.1101/gad.1395406
– volume: 21
  start-page: 3738
  year: 2001
  ident: 2019041122001671600_R14
  article-title: Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.21.11.3738-3749.2001
– volume: 49
  start-page: 1477
  year: 2006
  ident: 2019041122001671600_R35
  article-title: PGC-1α: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes.
  publication-title: Diabetologia
  doi: 10.1007/s00125-006-0268-6
– volume: 98
  start-page: 9713
  year: 2001
  ident: 2019041122001671600_R48
  article-title: Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.171184698
– volume: 88
  start-page: 2219
  year: 2000
  ident: 2019041122001671600_R58
  article-title: Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle.
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.2000.88.6.2219
– volume: 307
  start-page: 384
  year: 2005
  ident: 2019041122001671600_R69
  article-title: Mitochondrial dysfunction and type 2 diabetes.
  publication-title: Science
  doi: 10.1126/science.1104343
– volume: 94
  start-page: 525
  year: 2004
  ident: 2019041122001671600_R86
  article-title: Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner.
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000117088.36577.EB
– volume: 6
  start-page: 307
  year: 2000
  ident: 2019041122001671600_R20
  article-title: Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1.
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)00031-9
– volume: 125
  start-page: 1241
  year: 2006
  ident: 2019041122001671600_R65
  article-title: Mitochondria: dynamic organelles in disease, aging, and development.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.010
– volume: 28
  start-page: 176
  year: 2004
  ident: 2019041122001671600_R74
  article-title: Expression of the thermogenic nuclear hormone receptor coactivator PGC-1α is reduced in the adipose tissue of morbidly obese subjects.
  publication-title: Int J Obes Relat Metab Disord
  doi: 10.1038/sj.ijo.0802482
– volume: 299
  start-page: 896
  year: 2003
  ident: 2019041122001671600_R39
  article-title: Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide.
  publication-title: Science
  doi: 10.1126/science.1079368
– volume: 3
  start-page: 99
  year: 2006
  ident: 2019041122001671600_R32
  article-title: Coactivation of Foxa2 through Pgc-1β promotes liver fatty acid oxidation and triglyceride/VLDL secretion.
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2006.01.001
– volume: 24
  start-page: 3057
  year: 2004
  ident: 2019041122001671600_R38
  article-title: p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.7.3057-3067.2004
– volume: 278
  start-page: 30843
  year: 2003
  ident: 2019041122001671600_R31
  article-title: PGC-1β in the regulation of hepatic glucose and energy metabolism.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M303643200
– volume: 115
  start-page: 3587
  year: 2005
  ident: 2019041122001671600_R73
  article-title: Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents.
  publication-title: J Clin Invest
  doi: 10.1172/JCI25151
– volume: 2
  start-page: 151
  year: 2005
  ident: 2019041122001671600_R78
  article-title: Estrogen-related receptor α (ERRα): a novel target in type 2 diabetes.
  publication-title: Drug Discov Today Ther Strateg
  doi: 10.1016/j.ddstr.2005.05.001
– volume: 98
  start-page: 3820
  year: 2001
  ident: 2019041122001671600_R27
  article-title: Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.061035098
– volume: 120
  start-page: 261
  year: 2005
  ident: 2019041122001671600_R30
  article-title: Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP.
  publication-title: Cell
  doi: 10.1016/j.cell.2004.11.043
– volume: 3
  start-page: 429
  year: 2006
  ident: 2019041122001671600_R52
  article-title: GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α.
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2006.04.013
– volume: 434
  start-page: 113
  year: 2005
  ident: 2019041122001671600_R50
  article-title: Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1.
  publication-title: Nature
  doi: 10.1038/nature03354
– volume: 52
  start-page: 642
  year: 2003
  ident: 2019041122001671600_R43
  article-title: Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR.
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.3.642
– volume: 281
  start-page: 14683
  year: 2006
  ident: 2019041122001671600_R23
  article-title: Partnership of PGC-1α and HNF4α in the regulation of lipoprotein metabolism.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M512636200
– volume: 1
  start-page: 361
  year: 2005
  ident: 2019041122001671600_R16
  article-title: Metabolic control through the PGC-1 family of transcription coactivators.
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2005.05.004
– volume: 29
  start-page: S5
  issue: Suppl 1
  year: 2005
  ident: 2019041122001671600_R36
  article-title: Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-α
  publication-title: Int J Obes (Lond)
  doi: 10.1038/sj.ijo.0802905
– volume: 4
  start-page: 199
  year: 2006
  ident: 2019041122001671600_R64
  article-title: Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway.
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2006.08.005
– volume: 92
  start-page: 829
  year: 1998
  ident: 2019041122001671600_R5
  article-title: A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis.
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81410-5
– volume: 10
  start-page: 530
  year: 2004
  ident: 2019041122001671600_R26
  article-title: PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3.
  publication-title: Nat Med
  doi: 10.1038/nm1044
– volume: 118
  start-page: 453
  year: 2004
  ident: 2019041122001671600_R63
  article-title: One nucleotide in a κB site can determine cofactor specificity for NF-κB dimers.
  publication-title: Cell
  doi: 10.1016/j.cell.2004.08.007
– volume: 11
  start-page: 1049
  year: 2005
  ident: 2019041122001671600_R80
  article-title: Fast track to the porphyrias.
  publication-title: Nat Med
  doi: 10.1038/nm1005-1049
– volume: 320
  start-page: 1647
  year: 2000
  ident: 2019041122001671600_R79
  article-title: Diagnosis and management of porphyria.
  publication-title: Br Med J
  doi: 10.1136/bmj.320.7250.1647
– volume: 106
  start-page: 847
  year: 2000
  ident: 2019041122001671600_R85
  article-title: Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis.
  publication-title: J Clin Invest
  doi: 10.1172/JCI10268
– volume: 98
  start-page: 115
  year: 1999
  ident: 2019041122001671600_R7
  article-title: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1.
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80611-X
– volume: 2
  start-page: 227
  year: 2005
  ident: 2019041122001671600_R44
  article-title: The orphan nuclear receptor SHP regulates PGC-1α expression and energy production in brown adipocytes.
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2005.08.010
– volume: 3
  start-page: e101
  year: 2005
  ident: 2019041122001671600_R68
  article-title: PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0030101
– volume: 1
  start-page: 259
  year: 2005
  ident: 2019041122001671600_R83
  article-title: Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle.
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2005.03.002
– volume: 24
  start-page: 78
  year: 2003
  ident: 2019041122001671600_R33
  article-title: Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator.
  publication-title: Endocr Rev
  doi: 10.1210/er.2002-0012
– volume: 62
  start-page: 98
  year: 1999
  ident: 2019041122001671600_R8
  article-title: Human peroxisome proliferator activated receptor γ coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression.
  publication-title: Genomics
  doi: 10.1006/geno.1999.5977
– volume: 404
  start-page: 652
  year: 2000
  ident: 2019041122001671600_R4
  article-title: Towards a molecular understanding of adaptive thermogenesis.
  publication-title: Nature
  doi: 10.1038/35007527
– volume: 100
  start-page: 4012
  year: 2003
  ident: 2019041122001671600_R46
  article-title: Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4α in gluconeogenesis.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0730870100
– volume: 111
  start-page: 303
  year: 2003
  ident: 2019041122001671600_R67
  article-title: Neuronal degeneration and mitochondrial dysfunction.
  publication-title: J Clin Invest
  doi: 10.1172/JCI200317741
– volume: 100
  start-page: 1711
  year: 2003
  ident: 2019041122001671600_R40
  article-title: Regulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and mitochondrial function by MEF2 and HDAC5.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0337639100
– volume: 8
  start-page: 1224
  year: 1994
  ident: 2019041122001671600_R2
  article-title: mPPARγ2: tissue-specific regulator of an adipocyte enhancer.
  publication-title: Genes Dev
  doi: 10.1101/gad.8.10.1224
– volume: 5
  start-page: 73
  year: 2003
  ident: 2019041122001671600_R77
  article-title: Suppression of β cell energy metabolism and insulin release by PGC-1α.
  publication-title: Dev Cell
  doi: 10.1016/S1534-5807(03)00170-9
– volume: 19
  start-page: 1466
  year: 2005
  ident: 2019041122001671600_R51
  article-title: Activation of nuclear receptor coactivator PGC-1α by arginine methylation.
  publication-title: Genes Dev
  doi: 10.1101/gad.1295005
– volume: 12
  start-page: 1137
  year: 2003
  ident: 2019041122001671600_R19
  article-title: Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1α.
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(03)00391-5
– volume: 278
  start-page: 33370
  year: 2003
  ident: 2019041122001671600_R6
  article-title: Acquirement of brown fat cell features by human white adipocytes.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M305235200
– volume: 277
  start-page: 49761
  year: 2002
  ident: 2019041122001671600_R54
  article-title: Glucocorticoid signaling is perturbed by the atypical orphan receptor and corepressor SHP.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M205641200
– volume: 100
  start-page: 12378
  year: 2003
  ident: 2019041122001671600_R62
  article-title: PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2135217100
– volume: 103
  start-page: 10086
  year: 2006
  ident: 2019041122001671600_R84
  article-title: Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0603615103
SSID ssj0004089
Score 2.470964
SecondaryResourceType review_article
Snippet Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors....
SourceID proquest
pubmed
crossref
wolterskluwer
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 728
SubjectTerms Cardiomyopathies - genetics
Cardiomyopathies - physiopathology
Cardiomyopathy
Carrier Proteins - genetics
Carrier Proteins - physiology
Diabetes mellitus
Diabetes Mellitus - genetics
Diabetes Mellitus - physiopathology
Energy balance
Energy metabolism
Energy Metabolism - genetics
Energy Metabolism - physiology
Gene Expression Regulation
Gene regulation
Heat-Shock Proteins - genetics
Heat-Shock Proteins - physiology
Homeostasis
Homeostasis - genetics
Homeostasis - physiology
Humans
Metabolic pathways
Mitochondrial Diseases - genetics
Mitochondrial Diseases - physiopathology
Neurodegeneration
Neurodegenerative Diseases - genetics
Neurodegenerative Diseases - physiopathology
Obesity - genetics
Obesity - physiopathology
Oxidative metabolism
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Peroxisome proliferator-activated receptors
Receptors
Transcription factors
Transcription Factors - genetics
Transcription Factors - physiology
Title Peroxisome Proliferator-Activated Receptor γ Coactivator 1 Coactivators, Energy Homeostasis, and Metabolism
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003599-200612000-00005
https://www.ncbi.nlm.nih.gov/pubmed/17018837
https://www.proquest.com/docview/3129857761
https://www.proquest.com/docview/19513524
https://www.proquest.com/docview/68285310
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSAiEEGx8FAb4AXjpjOJ8OX2cYNOAbfDQSn2LHNsBRJNMTcfXX8-d43wUVvHxEjWO66T9nS939v3uCHkacy1ylXOWe55koYwnDM0SphOuEl-GXNhiEyen8dEsfDOP5n1lOssuWWUv1I8LeSX_gyq0Aa7Ikv0HZLtBoQE-A75wBITh-FcYvzfL6tunuiqQ7VQtMEoFfWiGZIUvEm1J0GfmDJrGH2RRyLGq3CVo4cMzi6ZpeIAfYbwKjMa6ST-AK-uFWYGwLNp0g-1KfqkrhexBR4Cpe3VW6hqDNNfTF_yyU-_WXq10uUXZfvmhD-VwK5JxwERs6-F2KrWh-zvREQP9KBom-G96GxxPRNAmaI0ZJsXp30_tnvzpu_RwdnycTg_m08vkig9-AZasePX6bU-E9WzNw-6ZHNMBaUrDsddskDVe48C9uE5ufK0wYqH-bAkLA7NjeovcdP4C3W_Av00umXKb7OyXAFrxnT6nNoLXbo1sk6snLlBih1S9aNCLRYO2okGtaNCBMFA-PKv3aCMYdCAYexQgpr1Y3CGzw4PpyyPmamswFYgkYpMsUSbwc82NDnwZhSqIs4RLUNDKmyQiUzKEc-1lxoNJm0eRENLTiQZ_QWougrtkq6xKc5_QWPjQNc8kGJdh5ssMVHykIvgquNYmkyMybv_tVLnE81j_ZJGiAwrYpGaJ1VAxvjIQI_Ks633WJFzZ0I8CcJu6sKbLbotq6mZtnQZg4CbwY2I-Ik-6y6BTcaNMlqY6r1MObgc4JuHmHjEmfgTPaETuNdLSP4jweJLgzdma-KQNrxmDPTBr5gQVGXgXLrGDFz34470ekmv9BNwlW6vluXkEFvEqe2xnwU8rnLjb
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peroxisome+proliferator-activated+receptor+gamma+coactivator+1+coactivators%2C+energy+homeostasis%2C+and+metabolism&rft.jtitle=Endocrine+reviews&rft.au=Handschin%2C+Christophe&rft.au=Spiegelman%2C+Bruce+M&rft.date=2006-12-01&rft.issn=0163-769X&rft.volume=27&rft.issue=7&rft.spage=728&rft_id=info:doi/10.1210%2Fer.2006-0037&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-769X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-769X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-769X&client=summon