Peroxisome Proliferator-Activated Receptor γ Coactivator 1 Coactivators, Energy Homeostasis, and Metabolism
Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of...
Saved in:
Published in | Endocrine reviews Vol. 27; no. 7; pp. 728 - 735 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.12.2006
Copyright by The Endocrine Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of the best-studied examples of coactivator control of metabolic pathways is the peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1) family. These proteins are strong activators of mitochondrial function and are thus dominant regulators of oxidative metabolism in a variety of tissues. The PGC-1 coactivators themselves are subject to powerful regulation at the transcriptional and posttranslational levels. Recent studies have elucidated the function of the PGC-1 coactivators in different tissues and have highlighted the implications of PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration. |
---|---|
AbstractList | Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of the best-studied examples of coactivator control of metabolic pathways is the peroxisome proliferator-activated receptor coactivator 1 (PGC-1) family. These proteins are strong activators of mitochondrial function and are thus dominant regulators of oxidative metabolism in a variety of tissues. The PGC-1 coactivators themselves are subject to powerful regulation at the transcriptional and posttranslational levels. Recent studies have elucidated the function of the PGC-1 coactivators in different tissues and have highlighted the implications of PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration.Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of the best-studied examples of coactivator control of metabolic pathways is the peroxisome proliferator-activated receptor coactivator 1 (PGC-1) family. These proteins are strong activators of mitochondrial function and are thus dominant regulators of oxidative metabolism in a variety of tissues. The PGC-1 coactivators themselves are subject to powerful regulation at the transcriptional and posttranslational levels. Recent studies have elucidated the function of the PGC-1 coactivators in different tissues and have highlighted the implications of PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration. Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of the best-studied examples of coactivator control of metabolic pathways is the peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1) family. These proteins are strong activators of mitochondrial function and are thus dominant regulators of oxidative metabolism in a variety of tissues. The PGC-1 coactivators themselves are subject to powerful regulation at the transcriptional and posttranslational levels. Recent studies have elucidated the function of the PGC-1 coactivators in different tissues and have highlighted the implications of PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration. Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of the best-studied examples of coactivator control of metabolic pathways is the peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) family. These proteins are strong activators of mitochondrial function and are thus dominant regulators of oxidative metabolism in a variety of tissues. The PGC-1 coactivators themselves are subject to powerful regulation at the transcriptional and posttranslational levels. Recent studies have elucidated the function of the PGC-1 coactivators in different tissues and have highlighted the implications of PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration. Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of the best-studied examples of coactivator control of metabolic pathways is the peroxisome proliferator-activated receptor coactivator 1 (PGC-1) family. These proteins are strong activators of mitochondrial function and are thus dominant regulators of oxidative metabolism in a variety of tissues. The PGC-1 coactivators themselves are subject to powerful regulation at the transcriptional and posttranslational levels. Recent studies have elucidated the function of the PGC-1 coactivators in different tissues and have highlighted the implications of PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration. |
Author | Handschin, Christoph Spiegelman, Bruce M. |
AuthorAffiliation | Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 |
AuthorAffiliation_xml | – name: Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 |
Author_xml | – sequence: 1 givenname: Christoph surname: Handschin fullname: Handschin, Christoph organization: 1Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 – sequence: 2 givenname: Bruce M. surname: Spiegelman fullname: Spiegelman, Bruce M. email: bruce_spiegelman@dfci.harvard.edu organization: 1Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17018837$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1TAQhS3Uit4WdqxRJCTYNGUmTmJ7WV0VilREhUBiZznOhKbkxre2Q-lz8R48E05TEKpAbDyao-8c_4z32c7oRmLsCcIRFggvyR8VAHUOwMUDtkJVVrlAqXbYCrDmuajVpz22H8IlAJQg1UO2hwJQSi5WbDgn7771wW0oO_du6DvyJjqfH9vYfzWR2uw9WdomKfvxPVs7s-ipxT-7cJidjOQ_32SnKcqFaEKfNDO22VuKpknJYfOI7XZmCPT4rh6wj69OPqxP87N3r9-sj89yy4WsctVIS7zoWqSWF6YqLa8biQZQWFBSNNaUqW-hIbCy6KpKCAOtbFWqLQp-wJ4vuVvvriYKUW_6YGkYzEhuCrqWhaw4wn9BVBXyqigT-OweeOkmP6ZLaI6FkukENSbq6R01NRtq9db3G-Nv9K_nTkCxANa7EDx12vbRxN6N0Zt-0Ah6nqkmr-eZ6nmmyXR4z_Q79-94ueDXbojkw5dhuk7ABZkhXiQkQZVS-WzAtEA-S1WyvVhsbtr-a4PbP8Z_Atbrvl0 |
CitedBy_id | crossref_primary_10_1016_j_freeradbiomed_2013_04_016 crossref_primary_10_3390_ijms22105390 crossref_primary_10_1155_2017_7083049 crossref_primary_10_1074_jbc_RA118_002377 crossref_primary_10_1161_CIRCULATIONAHA_113_001590 crossref_primary_10_2337_db07_1623 crossref_primary_10_1080_15476286_2016_1276149 crossref_primary_10_3390_cells9102234 crossref_primary_10_2527_jas_2013_6421 crossref_primary_10_1152_ajpendo_00234_2015 crossref_primary_10_1016_j_bbadis_2020_165838 crossref_primary_10_1146_annurev_nutr_012809_104638 crossref_primary_10_1002_jcp_24812 crossref_primary_10_1016_j_apsb_2020_01_001 crossref_primary_10_1016_j_lfs_2023_121686 crossref_primary_10_1016_j_mce_2008_01_017 crossref_primary_10_1073_pnas_1504391112 crossref_primary_10_1016_j_scr_2019_101458 crossref_primary_10_1089_ars_2009_2743 crossref_primary_10_1093_gerona_glr080 crossref_primary_10_1016_j_jaim_2017_07_004 crossref_primary_10_1016_j_mito_2022_05_007 crossref_primary_10_1074_jbc_M710150200 crossref_primary_10_1074_jbc_M109_083121 crossref_primary_10_1096_fj_09_142000 crossref_primary_10_32604_biocell_2022_014997 crossref_primary_10_1093_gerona_glt019 crossref_primary_10_3390_ijms22041651 crossref_primary_10_1016_j_beem_2012_05_001 crossref_primary_10_2337_db08_1466 crossref_primary_10_1210_jc_2013_3165 crossref_primary_10_1007_s00125_013_3133_4 crossref_primary_10_1016_j_cbpb_2015_04_007 crossref_primary_10_1016_j_redox_2016_10_004 crossref_primary_10_1073_pnas_0912533106 crossref_primary_10_1007_s10522_023_10024_3 crossref_primary_10_1111_jcmm_18051 crossref_primary_10_1007_s12192_023_01369_2 crossref_primary_10_1002_mnfr_201300747 crossref_primary_10_1016_j_apsb_2013_09_001 crossref_primary_10_1074_jbc_M109_018911 crossref_primary_10_1016_j_cbpb_2018_02_004 crossref_primary_10_1097_MNH_0b013e32835b54b0 crossref_primary_10_1016_j_acthis_2023_152097 crossref_primary_10_3390_ijms24097717 crossref_primary_10_1016_j_ejphar_2013_11_009 crossref_primary_10_1074_jbc_M111_251926 crossref_primary_10_1016_j_arr_2024_102396 crossref_primary_10_3390_medicina55080485 crossref_primary_10_1097_WAD_0b013e31815721c3 crossref_primary_10_1111_obr_13164 crossref_primary_10_3390_life10090173 crossref_primary_10_1080_15548627_2021_1916194 crossref_primary_10_1194_jlr_M800233_JLR200 crossref_primary_10_1007_s10545_010_9162_y crossref_primary_10_2217_dmt_12_42 crossref_primary_10_15252_emmm_201606372 crossref_primary_10_1093_hmg_ddy254 crossref_primary_10_1152_ajpcell_00469_2008 crossref_primary_10_1096_fj_13_240168 crossref_primary_10_1152_ajpendo_00331_2016 crossref_primary_10_3390_cells8040289 crossref_primary_10_1097_BOR_0b013e3282efb761 crossref_primary_10_1002_mds_23711 crossref_primary_10_1016_j_bbamcr_2014_08_010 crossref_primary_10_1152_ajprenal_00393_2020 crossref_primary_10_1021_acs_jnatprod_6b01086 crossref_primary_10_1371_journal_pone_0165598 crossref_primary_10_1016_j_nbd_2010_08_017 crossref_primary_10_1371_journal_pone_0053562 crossref_primary_10_3390_ijms22084167 crossref_primary_10_1093_hmg_ddp208 crossref_primary_10_3390_cells9071685 crossref_primary_10_1016_j_plipres_2014_11_003 crossref_primary_10_3390_diagnostics12071618 crossref_primary_10_1194_jlr_M020628 crossref_primary_10_1007_s10456_022_09835_8 crossref_primary_10_33549_physiolres_934529 crossref_primary_10_1111_apha_14234 crossref_primary_10_1371_journal_pone_0015239 crossref_primary_10_1016_j_biotechadv_2016_04_004 crossref_primary_10_1096_fj_14_257717 crossref_primary_10_3109_02713683_2015_1050736 crossref_primary_10_3389_fgene_2014_00216 crossref_primary_10_1210_me_2014_1083 crossref_primary_10_3892_ijmm_2016_2659 crossref_primary_10_1158_0008_5472_CAN_11_2967 crossref_primary_10_1172_jci_insight_131102 crossref_primary_10_1007_s00726_011_1123_8 crossref_primary_10_1155_2017_7821672 crossref_primary_10_1007_s11011_021_00750_3 crossref_primary_10_1016_j_abb_2014_06_028 crossref_primary_10_3109_09687688_2012_729094 crossref_primary_10_1016_j_yjmcc_2008_03_021 crossref_primary_10_5607_en_2014_23_4_345 crossref_primary_10_18632_oncotarget_25267 crossref_primary_10_1016_j_exger_2016_03_015 crossref_primary_10_1111_bph_12650 crossref_primary_10_1016_j_nut_2016_09_001 crossref_primary_10_1074_jbc_M710526200 crossref_primary_10_1016_j_neuroscience_2017_01_025 crossref_primary_10_1152_ajpendo_00163_2009 crossref_primary_10_1111_j_1471_4159_2010_06803_x crossref_primary_10_1073_pnas_1115813109 crossref_primary_10_1016_j_semnephrol_2018_01_003 crossref_primary_10_1152_physiol_00046_2007 crossref_primary_10_1016_j_molmet_2024_101968 crossref_primary_10_1016_j_orcp_2020_12_001 crossref_primary_10_1152_ajpendo_00541_2009 crossref_primary_10_1016_j_celrep_2022_111204 crossref_primary_10_1074_jbc_M115_638924 crossref_primary_10_17221_263_2009_CJAS crossref_primary_10_1002_jat_4288 crossref_primary_10_2147_JPR_S233583 crossref_primary_10_1002_mus_23838 crossref_primary_10_18632_aging_204577 crossref_primary_10_1016_j_jid_2020_08_007 crossref_primary_10_4196_kjpp_2015_19_3_283 crossref_primary_10_3390_ijms242216187 crossref_primary_10_1007_s00018_010_0454_z crossref_primary_10_1186_s12902_015_0010_9 crossref_primary_10_1016_j_tem_2008_07_005 crossref_primary_10_3892_ijo_2015_2834 crossref_primary_10_1038_ncomms4224 crossref_primary_10_1016_j_mito_2021_09_012 crossref_primary_10_1002_jcp_24664 crossref_primary_10_1152_ajpregu_00189_2010 crossref_primary_10_1002_jms_3227 crossref_primary_10_1186_1471_2164_15_413 crossref_primary_10_1016_j_arr_2015_09_005 crossref_primary_10_1089_ars_2012_4774 crossref_primary_10_1016_j_mce_2010_08_003 crossref_primary_10_1021_acsomega_7b01134 crossref_primary_10_1210_me_2010_0512 crossref_primary_10_1530_JME_16_0260 crossref_primary_10_3390_biomedicines8090351 crossref_primary_10_1016_j_freeradbiomed_2024_05_022 crossref_primary_10_1152_ajpendo_00233_2019 crossref_primary_10_1016_j_molcel_2007_08_012 crossref_primary_10_1093_gbe_evu025 crossref_primary_10_3389_fcvm_2021_664626 crossref_primary_10_1038_emboj_2012_300 crossref_primary_10_1016_j_jsbmb_2012_09_001 crossref_primary_10_3390_ph2030250 crossref_primary_10_1016_j_bbadis_2016_11_023 crossref_primary_10_1007_s11357_024_01465_w crossref_primary_10_1111_cns_12655 crossref_primary_10_1016_j_fbio_2025_106248 crossref_primary_10_1016_j_bbadis_2024_167497 crossref_primary_10_1002_pmic_201800404 crossref_primary_10_1111_j_1440_1681_2009_05275_x crossref_primary_10_1080_03639045_2023_2243334 crossref_primary_10_3390_nu8040203 crossref_primary_10_1096_fj_13_238071 crossref_primary_10_1007_s11033_024_09232_y crossref_primary_10_1038_srep30272 crossref_primary_10_1146_annurev_physiol_010908_163119 crossref_primary_10_1111_j_1474_9726_2012_00844_x crossref_primary_10_1186_s12906_016_1109_x crossref_primary_10_1681_ASN_2014121271 crossref_primary_10_1016_j_bbalip_2009_11_008 crossref_primary_10_1038_nrm_2016_23 crossref_primary_10_1074_jbc_M110_179523 crossref_primary_10_1124_jpet_112_192138 crossref_primary_10_1038_s41392_024_01756_w crossref_primary_10_1007_s00441_022_03602_3 crossref_primary_10_1038_ijo_2011_176 crossref_primary_10_3390_nu8050254 crossref_primary_10_1007_s11033_018_4551_7 crossref_primary_10_1007_s12035_019_01731_5 crossref_primary_10_1016_j_phymed_2022_153947 crossref_primary_10_1210_en_2008_0051 crossref_primary_10_1016_j_ceb_2014_11_002 crossref_primary_10_1016_j_tips_2016_08_001 crossref_primary_10_1073_pnas_1207287109 crossref_primary_10_1152_ajpcell_00266_2014 crossref_primary_10_1038_srep30051 crossref_primary_10_1155_2007_68202 crossref_primary_10_1111_jcmm_70236 crossref_primary_10_1210_er_2007_0012 crossref_primary_10_1172_JCI39054 crossref_primary_10_1016_j_ejphar_2020_173273 crossref_primary_10_1016_j_phymed_2021_153658 crossref_primary_10_1016_j_niox_2018_04_005 crossref_primary_10_1139_H10_030 crossref_primary_10_3390_nu14153112 crossref_primary_10_1038_nature07206 crossref_primary_10_1155_2013_593267 crossref_primary_10_1002_embr_201338126 crossref_primary_10_1016_j_mito_2015_01_007 crossref_primary_10_1016_j_ceb_2008_04_005 crossref_primary_10_1074_jbc_M110_145995 crossref_primary_10_1002_ptr_6374 crossref_primary_10_14336_AD_2019_1125 crossref_primary_10_3945_jn_113_186676 crossref_primary_10_3389_fcell_2020_00671 crossref_primary_10_1093_hmg_ddt359 crossref_primary_10_4161_rna_8_6_17210 crossref_primary_10_1016_j_ecl_2008_06_006 crossref_primary_10_1155_2021_3653157 crossref_primary_10_1186_s12967_023_04200_9 crossref_primary_10_1016_j_bbrc_2024_150478 crossref_primary_10_3233_JAD_220514 crossref_primary_10_1016_j_mce_2010_11_020 crossref_primary_10_1111_bph_12394 crossref_primary_10_1002_jcp_24015 crossref_primary_10_1152_ajpcell_00009_2016 crossref_primary_10_1038_s41698_019_0081_6 crossref_primary_10_1371_journal_pone_0058683 crossref_primary_10_1007_s00726_016_2206_3 crossref_primary_10_1007_s12264_023_01114_w crossref_primary_10_1016_j_expneurol_2020_113309 crossref_primary_10_1042_BSR20190127 crossref_primary_10_1007_s00109_008_0425_0 crossref_primary_10_1016_j_lfs_2019_116579 crossref_primary_10_1172_JCI31785 crossref_primary_10_1007_s00726_020_02934_0 crossref_primary_10_1007_s40279_024_02072_7 crossref_primary_10_1242_jeb_014951 crossref_primary_10_1016_j_yexcr_2010_10_006 crossref_primary_10_1016_j_metabol_2009_10_023 crossref_primary_10_1111_liv_12534 crossref_primary_10_1172_jci_insight_136277 crossref_primary_10_1016_j_bcp_2019_03_008 crossref_primary_10_1016_j_bbagen_2013_04_006 crossref_primary_10_1152_ajpcell_00190_2011 crossref_primary_10_1016_j_pharmthera_2016_06_004 crossref_primary_10_14814_phy2_12864 crossref_primary_10_1007_s00421_022_05107_x crossref_primary_10_1074_jbc_M704817200 crossref_primary_10_2337_db06_1596 crossref_primary_10_1016_S0003_4266_12_70009_4 crossref_primary_10_1073_pnas_1516219112 crossref_primary_10_1016_j_numecd_2020_11_019 crossref_primary_10_1155_2015_921274 crossref_primary_10_18632_aging_102179 crossref_primary_10_1016_j_bbrc_2010_06_034 crossref_primary_10_2337_db19_1153 crossref_primary_10_1139_H09_008 crossref_primary_10_1016_j_jid_2017_04_025 crossref_primary_10_1016_j_bcp_2023_115717 crossref_primary_10_1016_j_ygcen_2017_07_023 crossref_primary_10_1152_jn_00295_2021 crossref_primary_10_3390_antiox12020385 crossref_primary_10_1371_journal_pone_0134087 crossref_primary_10_1016_j_fbio_2024_105148 crossref_primary_10_1155_2012_759583 crossref_primary_10_1177_0748730411414168 crossref_primary_10_1016_j_lfs_2009_04_002 crossref_primary_10_1152_physiol_00006_2017 crossref_primary_10_2337_db23_0454 crossref_primary_10_1519_JSC_0000000000001205 crossref_primary_10_3390_jcm10102072 crossref_primary_10_1074_jbc_M113_489674 crossref_primary_10_1093_cvr_cvp418 crossref_primary_10_1007_s10522_018_9768_2 crossref_primary_10_1161_CIRCULATIONAHA_107_702795 crossref_primary_10_1186_2046_2395_2_13 crossref_primary_10_1074_jbc_M110_131615 crossref_primary_10_1016_j_atherosclerosis_2020_02_001 crossref_primary_10_1016_j_expneurol_2020_113593 crossref_primary_10_1111_jcpt_12808 crossref_primary_10_1158_1078_0432_CCR_11_3221 crossref_primary_10_1074_jbc_C116_761049 crossref_primary_10_1161_CIRCRESAHA_117_305624 crossref_primary_10_1002_dta_1587 crossref_primary_10_1016_j_mito_2021_08_008 crossref_primary_10_1002_alz_14275 crossref_primary_10_1016_j_molmet_2013_05_001 crossref_primary_10_1186_s12906_018_2319_1 crossref_primary_10_1093_hmg_ddp183 crossref_primary_10_1074_jbc_M611214200 crossref_primary_10_1016_j_tem_2008_10_001 crossref_primary_10_1016_j_scispo_2020_03_006 crossref_primary_10_1016_j_bbadis_2024_167302 crossref_primary_10_1016_j_cbpb_2010_07_001 crossref_primary_10_1186_s12986_024_00834_8 crossref_primary_10_7554_eLife_73718 crossref_primary_10_1016_j_heliyon_2023_e12987 crossref_primary_10_1016_j_cbd_2014_02_001 crossref_primary_10_1007_s13679_014_0091_1 crossref_primary_10_1155_2016_2405176 crossref_primary_10_2337_db11_0121 crossref_primary_10_1016_j_expneurol_2020_113332 crossref_primary_10_1371_journal_pgen_1000543 crossref_primary_10_1111_j_1476_5381_2010_01105_x crossref_primary_10_1042_BCJ20170967 crossref_primary_10_3390_cells9122621 crossref_primary_10_1371_journal_pone_0048455 crossref_primary_10_15857_ksep_2019_28_4_365 crossref_primary_10_1530_JME_13_0201 crossref_primary_10_1016_j_bbadis_2014_02_010 crossref_primary_10_1016_j_gene_2020_144516 crossref_primary_10_1016_j_mito_2010_08_004 crossref_primary_10_3390_antiox8120603 crossref_primary_10_1074_jbc_M109_022749 crossref_primary_10_1042_BJ20090928 crossref_primary_10_1016_j_beem_2008_10_002 crossref_primary_10_2337_db07_1238 crossref_primary_10_1007_s10522_015_9585_9 crossref_primary_10_1016_j_neulet_2019_134431 crossref_primary_10_1016_j_neuroscience_2011_04_019 crossref_primary_10_1074_jbc_M808818200 crossref_primary_10_1016_j_bcp_2010_03_013 crossref_primary_10_1155_2017_6561701 crossref_primary_10_1371_journal_pone_0145162 crossref_primary_10_1038_s41598_017_09148_7 crossref_primary_10_1155_2019_8973076 crossref_primary_10_1007_s12035_017_0592_5 crossref_primary_10_1371_journal_pone_0010778 crossref_primary_10_3390_biology10010031 crossref_primary_10_1139_H08_074 crossref_primary_10_1152_ajpendo_00681_2010 crossref_primary_10_1016_j_bbapap_2009_10_022 crossref_primary_10_1007_s10545_015_9819_7 crossref_primary_10_1007_s00438_017_1385_2 crossref_primary_10_1038_s41598_020_59244_4 crossref_primary_10_1016_j_canlet_2014_04_001 crossref_primary_10_1080_15548627_2019_1659612 crossref_primary_10_1128_MCB_01710_13 crossref_primary_10_1371_journal_pone_0021660 crossref_primary_10_1038_onc_2012_529 crossref_primary_10_1139_cjz_2013_0267 crossref_primary_10_1371_journal_pone_0028290 crossref_primary_10_46235_1028_7221_348_PIH crossref_primary_10_1007_s40519_018_0622_y crossref_primary_10_1002_cbf_3006 crossref_primary_10_1016_j_tem_2015_06_008 crossref_primary_10_1007_s11010_008_9888_0 crossref_primary_10_1016_j_imbio_2017_03_001 crossref_primary_10_1016_j_cmet_2010_11_008 crossref_primary_10_1074_mcp_M700198_MCP200 crossref_primary_10_4161_cc_22376 crossref_primary_10_1073_pnas_1016089107 crossref_primary_10_1371_journal_pone_0011606 crossref_primary_10_3390_ph15040469 crossref_primary_10_1016_j_arr_2009_03_003 crossref_primary_10_1186_s13395_016_0114_6 crossref_primary_10_1016_j_yexcr_2019_111672 crossref_primary_10_1210_en_2008_0816 crossref_primary_10_1016_j_cmet_2010_11_011 crossref_primary_10_1016_j_pcd_2018_07_005 crossref_primary_10_1007_s11064_019_02794_5 crossref_primary_10_3892_etm_2017_5375 crossref_primary_10_1155_2016_9039754 crossref_primary_10_1002_ijc_30802 crossref_primary_10_2337_db12_1107 crossref_primary_10_1124_mol_119_116806 crossref_primary_10_1016_j_cmet_2011_04_011 crossref_primary_10_1038_s41467_024_51780_1 crossref_primary_10_1186_s13045_018_0648_7 crossref_primary_10_1089_scd_2012_0466 crossref_primary_10_1161_ATVBAHA_108_181636 crossref_primary_10_3892_ijmm_2024_5467 crossref_primary_10_1371_journal_pone_0030983 crossref_primary_10_1177_1535370216657900 crossref_primary_10_1016_j_isci_2023_106511 crossref_primary_10_1186_s12944_020_01261_3 crossref_primary_10_1016_j_exger_2013_08_004 crossref_primary_10_1016_j_molcel_2012_10_027 crossref_primary_10_1016_j_biocel_2022_106361 crossref_primary_10_1016_j_febslet_2008_01_033 crossref_primary_10_1186_s12964_022_00830_6 crossref_primary_10_1007_s00018_012_1043_0 crossref_primary_10_1186_s43042_021_00200_w crossref_primary_10_1016_j_bbagen_2016_01_017 crossref_primary_10_1113_JP270541 crossref_primary_10_1113_JP270543 crossref_primary_10_1002_ame2_12058 crossref_primary_10_1002_jbt_70043 crossref_primary_10_1093_cvr_cvy258 crossref_primary_10_3389_fphys_2024_1496870 crossref_primary_10_1007_s00125_013_2911_3 crossref_primary_10_1210_me_2009_0276 crossref_primary_10_1371_journal_pone_0010962 crossref_primary_10_3389_fimmu_2022_929520 crossref_primary_10_3390_cells8040335 crossref_primary_10_1016_j_bbabio_2015_05_017 crossref_primary_10_1371_journal_pone_0010970 crossref_primary_10_1016_j_mad_2016_12_005 crossref_primary_10_1016_j_nbd_2016_11_001 crossref_primary_10_1096_fj_201902476R crossref_primary_10_1186_s12944_018_0740_6 crossref_primary_10_2337_db12_0291 crossref_primary_10_3390_ijms12117554 crossref_primary_10_1088_1742_6596_1279_1_012011 crossref_primary_10_1111_obr_12958 crossref_primary_10_1016_j_cmet_2007_08_003 crossref_primary_10_1080_09168451_2015_1062715 crossref_primary_10_1152_ajpregu_00806_2010 crossref_primary_10_1186_1743_7075_7_36 crossref_primary_10_3892_ijmm_2016_2487 crossref_primary_10_1152_physiol_00039_2014 crossref_primary_10_1126_scisignal_2000143 crossref_primary_10_1016_j_bbrc_2012_11_111 crossref_primary_10_1080_02640414_2023_2195737 crossref_primary_10_1136_thoraxjnl_2016_208964 crossref_primary_10_1080_23744235_2023_2228403 crossref_primary_10_3390_ijms15058713 crossref_primary_10_1016_j_nbd_2012_08_015 crossref_primary_10_1038_s41598_020_61160_6 crossref_primary_10_1038_srep40544 crossref_primary_10_1007_s40279_018_0894_4 crossref_primary_10_1152_ajpendo_00648_2009 crossref_primary_10_1016_j_yexcr_2018_06_016 crossref_primary_10_1056_NEJMcibr1005397 crossref_primary_10_1128_MCB_06575_11 crossref_primary_10_1111_j_1582_4934_2008_00404_x crossref_primary_10_1128_MCB_01479_07 crossref_primary_10_1038_modpathol_2015_101 crossref_primary_10_1002_mnfr_202000196 crossref_primary_10_1002_ajpa_22661 crossref_primary_10_4161_cc_28189 crossref_primary_10_3389_fcell_2022_887764 crossref_primary_10_1111_j_1365_2036_2010_04366_x crossref_primary_10_1016_j_jff_2014_11_027 crossref_primary_10_1080_13880209_2020_1756349 crossref_primary_10_1002_hep_21991 crossref_primary_10_1186_2193_1801_3_2 crossref_primary_10_1016_j_freeradbiomed_2011_08_036 crossref_primary_10_1074_jbc_M109_070169 crossref_primary_10_1093_hmg_ddm045 crossref_primary_10_3934_molsci_2016_4_479 crossref_primary_10_1186_s13195_018_0342_6 crossref_primary_10_3892_or_2014_2974 crossref_primary_10_1016_j_yjmcc_2018_01_005 crossref_primary_10_1016_j_ecoenv_2024_115955 crossref_primary_10_1016_j_raem_2017_06_002 crossref_primary_10_1101_gad_180406_111 crossref_primary_10_1111_j_1471_4159_2011_07184_x crossref_primary_10_2147_JIR_S441597 crossref_primary_10_1111_j_1478_3231_2010_02423_x crossref_primary_10_1016_j_cels_2022_08_003 crossref_primary_10_1016_j_mito_2010_12_013 crossref_primary_10_1186_s40001_024_02248_x crossref_primary_10_1016_j_freeradbiomed_2017_12_030 crossref_primary_10_3389_fphys_2015_00325 crossref_primary_10_2337_db12_0314 crossref_primary_10_1021_acs_chemrestox_1c00340 crossref_primary_10_3390_ijms21061935 crossref_primary_10_1089_jmf_2015_3496 crossref_primary_10_1007_s00441_014_1857_1 crossref_primary_10_1080_26895293_2022_2156622 crossref_primary_10_1096_fj_12_208041 crossref_primary_10_1210_en_2011_1502 crossref_primary_10_1074_jbc_M704332200 crossref_primary_10_1111_j_1742_4658_2009_07516_x crossref_primary_10_1371_journal_pone_0124727 crossref_primary_10_1074_jbc_M109_052506 crossref_primary_10_1152_ajpheart_00635_2015 crossref_primary_10_1210_en_2017_00872 crossref_primary_10_1002_jcsm_12753 crossref_primary_10_1002_stem_3425 crossref_primary_10_1016_j_cbpa_2019_04_011 crossref_primary_10_1172_JCI87927 crossref_primary_10_1002_oby_22061 crossref_primary_10_1016_j_jnutbio_2017_11_012 crossref_primary_10_2337_db16_0227 crossref_primary_10_1016_j_cmet_2011_02_019 crossref_primary_10_1530_JOE_17_0367 crossref_primary_10_1210_clinem_dgz104 crossref_primary_10_2337_db13_1283 crossref_primary_10_1016_j_mito_2010_05_012 crossref_primary_10_1186_1476_511X_10_246 crossref_primary_10_3803_EnM_2015_30_3_235 crossref_primary_10_1155_2016_5465804 crossref_primary_10_1093_cvr_cvr155 crossref_primary_10_1152_ajpcell_00368_2011 crossref_primary_10_1152_ajpendo_90292_2008 crossref_primary_10_1074_jbc_M110_202390 crossref_primary_10_1038_nm1106_1239 crossref_primary_10_18632_oncotarget_3848 crossref_primary_10_1186_1752_0509_3_31 crossref_primary_10_1002_jcp_27175 crossref_primary_10_1152_ajpendo_00512_2010 crossref_primary_10_1002_mrd_23269 crossref_primary_10_1186_1471_2202_15_29 crossref_primary_10_1113_JP280748 crossref_primary_10_2337_db15_1500 crossref_primary_10_3390_ijms21010162 crossref_primary_10_1155_2016_5152029 crossref_primary_10_3390_ijms19051327 crossref_primary_10_1007_s11427_015_4833_4 crossref_primary_10_1016_j_freeradbiomed_2014_05_016 crossref_primary_10_1038_nrd4023 crossref_primary_10_1371_journal_pone_0155646 crossref_primary_10_1073_pnas_1121060109 crossref_primary_10_1111_bph_14935 crossref_primary_10_1152_ajpregu_00395_2016 crossref_primary_10_1210_me_2016_1036 crossref_primary_10_1016_j_febslet_2009_11_026 crossref_primary_10_1096_fj_202300563R crossref_primary_10_3109_07420528_2015_1050726 crossref_primary_10_3390_nu15010174 crossref_primary_10_1152_ajplung_00305_2020 crossref_primary_10_1016_j_cardfail_2014_03_007 crossref_primary_10_1051_medsci_200723111034 crossref_primary_10_3803_EnM_2016_31_2_328 crossref_primary_10_1371_journal_pone_0107109 crossref_primary_10_1016_j_biopha_2023_114847 crossref_primary_10_1016_j_neuroscience_2010_04_063 crossref_primary_10_1161_CIRCHEARTFAILURE_114_001469 crossref_primary_10_1016_j_tem_2012_06_006 crossref_primary_10_1016_j_bbagen_2009_07_031 crossref_primary_10_1007_s11010_024_05084_z crossref_primary_10_1172_JCI74668 crossref_primary_10_1007_s00125_017_4401_5 crossref_primary_10_1016_j_brainres_2016_04_076 crossref_primary_10_1371_journal_pgen_0030188 crossref_primary_10_2337_db08_1571 crossref_primary_10_1002_jcb_26748 crossref_primary_10_3389_fphys_2022_997619 crossref_primary_10_1038_s44318_024_00335_7 crossref_primary_10_3389_fonc_2020_00820 crossref_primary_10_1016_j_toxicon_2019_11_009 crossref_primary_10_1210_en_2007_1447 crossref_primary_10_1155_2013_635203 crossref_primary_10_1016_j_bbrc_2015_04_020 crossref_primary_10_1002_jnr_22225 crossref_primary_10_1002_jnr_22469 crossref_primary_10_1177_1010428317695031 crossref_primary_10_1042_BSR20150076 crossref_primary_10_2337_db12_1665 crossref_primary_10_1038_cr_2010_4 crossref_primary_10_1007_s00239_010_9347_x crossref_primary_10_1007_s11064_016_2110_y crossref_primary_10_1016_j_cmet_2011_03_019 crossref_primary_10_3390_ani10091715 crossref_primary_10_1517_13543781003640169 crossref_primary_10_1016_j_bbrc_2022_08_004 crossref_primary_10_18632_aging_103088 crossref_primary_10_1210_en_2011_1367 crossref_primary_10_3390_ijms19051529 crossref_primary_10_2337_db12_0703 crossref_primary_10_1016_j_cmet_2015_08_005 crossref_primary_10_1016_j_omtm_2021_06_010 crossref_primary_10_1152_japplphysiol_01110_2017 crossref_primary_10_1016_j_brainres_2008_11_023 crossref_primary_10_1155_2016_4085727 crossref_primary_10_3390_ijms18071393 crossref_primary_10_1007_s00726_016_2202_7 crossref_primary_10_1155_2014_701758 crossref_primary_10_1186_s12950_017_0156_5 crossref_primary_10_1002_iub_608 crossref_primary_10_1016_j_bbadis_2008_09_006 crossref_primary_10_1016_j_metabol_2009_07_020 crossref_primary_10_1016_j_tem_2024_10_006 crossref_primary_10_1038_s41392_025_02141_x crossref_primary_10_3390_biom10030361 crossref_primary_10_1038_ijo_2017_308 crossref_primary_10_1097_QAI_0000000000002180 crossref_primary_10_1111_ejn_14728 crossref_primary_10_2337_db09_0929 crossref_primary_10_1089_ars_2012_4615 crossref_primary_10_4162_nrp_2019_13_1_3 crossref_primary_10_1016_j_bcp_2015_06_020 crossref_primary_10_3390_cells9071708 crossref_primary_10_3733_ca_v065n03p136 crossref_primary_10_1111_apha_13402 crossref_primary_10_1371_journal_pone_0048925 crossref_primary_10_1007_s11581_018_2807_9 crossref_primary_10_1186_s12929_023_00975_7 crossref_primary_10_1371_journal_pone_0081724 crossref_primary_10_1016_j_bbamcr_2011_03_017 crossref_primary_10_1073_pnas_0909131106 crossref_primary_10_1016_j_cellsig_2011_04_010 crossref_primary_10_1016_j_bbabio_2009_02_023 crossref_primary_10_1186_2049_3002_1_22 crossref_primary_10_1080_15592294_2019_1618164 crossref_primary_10_1016_j_mam_2010_02_008 crossref_primary_10_3389_fphar_2024_1486717 crossref_primary_10_1155_2013_342561 crossref_primary_10_1007_s10555_019_09794_5 crossref_primary_10_3390_biomedicines8100390 crossref_primary_10_3389_fnmol_2021_588230 crossref_primary_10_1371_journal_pone_0031272 crossref_primary_10_1002_em_20571 crossref_primary_10_1089_rej_2017_1975 crossref_primary_10_1113_jphysiol_2010_198598 crossref_primary_10_1007_s12192_022_01282_0 crossref_primary_10_1517_14728222_2010_528395 crossref_primary_10_1152_ajpendo_00755_2009 crossref_primary_10_1016_j_pharmthera_2023_108531 crossref_primary_10_1002_jcp_24978 crossref_primary_10_1093_hmg_dds177 crossref_primary_10_1681_ASN_2010111154 crossref_primary_10_1016_j_phrs_2022_106481 crossref_primary_10_1093_hmg_ddr089 crossref_primary_10_12998_wjcc_v7_i15_2065 crossref_primary_10_1002_jcp_24986 crossref_primary_10_1016_j_pnpbp_2015_06_012 crossref_primary_10_1038_ncomms1036 crossref_primary_10_1242_dev_136382 crossref_primary_10_3389_fcell_2020_00530 crossref_primary_10_1159_000345689 crossref_primary_10_1080_09712119_2021_1889563 crossref_primary_10_1093_beheco_arx129 crossref_primary_10_1371_journal_pone_0002890 crossref_primary_10_1016_j_semcdb_2019_09_001 crossref_primary_10_1007_s12035_020_02059_1 crossref_primary_10_1152_physiolgenomics_00030_2015 crossref_primary_10_1016_j_biocel_2017_09_020 crossref_primary_10_1016_j_bbrc_2015_08_092 crossref_primary_10_1016_j_metabol_2018_03_005 crossref_primary_10_3390_ijms12107199 crossref_primary_10_1007_s00246_011_9889_8 crossref_primary_10_1007_s00360_009_0398_5 crossref_primary_10_3389_fnagi_2018_00246 crossref_primary_10_1113_JP278853 crossref_primary_10_1007_s10616_018_0237_1 crossref_primary_10_1016_j_nurt_2008_05_003 crossref_primary_10_3390_nu13082596 crossref_primary_10_3390_biom11030404 crossref_primary_10_1074_jbc_M703634200 crossref_primary_10_3892_mmr_2018_8433 crossref_primary_10_1161_01_RES_0000259591_97107_6c crossref_primary_10_3389_fendo_2021_799081 crossref_primary_10_1016_j_heares_2012_11_007 crossref_primary_10_1096_fj_201802512RR crossref_primary_10_1016_j_abb_2009_09_011 crossref_primary_10_3390_cells8070662 crossref_primary_10_1113_jphysiol_2012_240077 crossref_primary_10_1093_hmg_dds144 crossref_primary_10_29219_fnr_v65_5492 crossref_primary_10_1016_j_phrs_2024_107484 crossref_primary_10_1089_met_2016_0108 crossref_primary_10_1016_j_celrep_2015_12_086 crossref_primary_10_1016_j_mito_2015_10_001 crossref_primary_10_1093_cvr_cvv050 crossref_primary_10_3390_antiox9080664 crossref_primary_10_1093_nar_gks025 crossref_primary_10_1111_j_1742_4658_2009_07302_x crossref_primary_10_1152_ajpendo_00581_2012 crossref_primary_10_1007_s00774_020_01100_6 crossref_primary_10_1371_journal_pone_0010025 crossref_primary_10_1016_j_biopen_2015_10_002 crossref_primary_10_2337_db09_1402 crossref_primary_10_1371_journal_pone_0001535 crossref_primary_10_1093_brain_awad202 crossref_primary_10_3389_fnagi_2021_649929 crossref_primary_10_1186_1471_2350_12_69 crossref_primary_10_1186_s13293_018_0164_z crossref_primary_10_31083_j_fbl2703096 crossref_primary_10_1016_j_yjmcc_2016_08_013 crossref_primary_10_3109_10799891003641074 crossref_primary_10_3109_07420528_2015_1042582 crossref_primary_10_3390_ijms22115769 crossref_primary_10_1042_BSR20181767 crossref_primary_10_3389_fcdhc_2022_982665 crossref_primary_10_1002_ar_23644 crossref_primary_10_1073_pnas_1207605109 crossref_primary_10_1056_NEJMcibr0802500 crossref_primary_10_1016_j_exger_2023_112203 crossref_primary_10_1074_jbc_M114_589325 crossref_primary_10_1016_j_ajpath_2012_09_003 crossref_primary_10_1016_j_maturitas_2011_12_021 crossref_primary_10_1016_j_febslet_2007_11_015 crossref_primary_10_1016_j_febslet_2007_11_017 crossref_primary_10_1074_jbc_M109_008797 crossref_primary_10_3389_fphys_2022_989547 crossref_primary_10_3390_ijms22031059 crossref_primary_10_3945_jn_108_098269 crossref_primary_10_1016_j_yexcr_2017_08_017 crossref_primary_10_1016_j_endmts_2020_100067 crossref_primary_10_1128_MCB_01669_08 crossref_primary_10_1093_hmg_ddt247 crossref_primary_10_7717_peerj_12856 crossref_primary_10_1016_j_stem_2024_02_004 crossref_primary_10_3389_fphys_2018_01957 crossref_primary_10_1016_j_lfs_2022_120638 crossref_primary_10_1016_j_neurot_2024_e00515 crossref_primary_10_1016_j_cell_2012_08_034 crossref_primary_10_14336_AD_2017_0831 crossref_primary_10_1152_physrev_00054_2021 crossref_primary_10_1042_BST20160071C crossref_primary_10_1016_j_celrep_2013_07_019 crossref_primary_10_1016_j_bbamcr_2016_08_007 crossref_primary_10_1152_ajpendo_00487_2011 crossref_primary_10_1007_s13238_017_0409_3 crossref_primary_10_1038_nrm3293 crossref_primary_10_1111_j_1471_4159_2010_06631_x crossref_primary_10_1186_1743_8977_9_40 crossref_primary_10_1042_CS20090533 crossref_primary_10_1096_fj_201701264R crossref_primary_10_3389_fphys_2020_615038 crossref_primary_10_1186_1471_2156_13_41 crossref_primary_10_1016_j_bbamcr_2014_04_004 crossref_primary_10_1016_j_cmet_2017_04_029 crossref_primary_10_1371_journal_pgen_1009488 crossref_primary_10_1016_j_exger_2010_01_011 crossref_primary_10_1210_me_2015_1005 crossref_primary_10_1210_me_2011_0028 crossref_primary_10_1038_s41467_023_42690_9 crossref_primary_10_1196_annals_1427_006 crossref_primary_10_3390_ijms18091897 crossref_primary_10_1016_j_bbagen_2012_01_003 crossref_primary_10_3390_cells11192944 crossref_primary_10_1007_s12576_018_0649_x crossref_primary_10_1016_j_cmet_2008_07_006 crossref_primary_10_1016_j_neuroscience_2020_05_015 crossref_primary_10_1017_S0029665119000533 crossref_primary_10_1016_j_mehy_2020_109775 crossref_primary_10_1016_j_mad_2023_111826 crossref_primary_10_3945_jn_114_196113 crossref_primary_10_1111_ejn_13157 crossref_primary_10_1038_celldisc_2017_39 crossref_primary_10_1093_hmg_ddp093 crossref_primary_10_1113_jphysiol_2007_149948 crossref_primary_10_1016_j_jpba_2013_10_022 crossref_primary_10_1093_braincomms_fcab252 crossref_primary_10_1152_japplphysiol_00737_2009 crossref_primary_10_1016_j_cmet_2013_12_003 crossref_primary_10_1038_s41598_017_13102_y crossref_primary_10_1016_j_mce_2014_12_027 crossref_primary_10_1016_j_crfs_2024_100683 crossref_primary_10_1186_s12864_017_4292_3 crossref_primary_10_1039_D2FO03673H crossref_primary_10_1152_physrev_00017_2022 crossref_primary_10_1021_acsomega_3c07480 crossref_primary_10_3389_fphys_2014_00479 crossref_primary_10_3233_JAD_151105 crossref_primary_10_1016_j_tem_2011_09_007 crossref_primary_10_1038_ejcn_2017_68 crossref_primary_10_18632_oncotarget_10685 crossref_primary_10_1038_s41598_017_14868_x crossref_primary_10_1016_j_jhep_2012_10_024 crossref_primary_10_1007_s11926_008_0038_1 crossref_primary_10_1016_j_tips_2009_03_006 crossref_primary_10_1021_acs_jmedchem_0c00191 crossref_primary_10_1007_s13273_023_00424_4 crossref_primary_10_1016_j_physbeh_2013_03_022 crossref_primary_10_3390_ijms22115595 crossref_primary_10_1038_s41388_021_01707_7 crossref_primary_10_1074_jbc_M111_299727 crossref_primary_10_1158_2326_6066_CIR_18_0513 crossref_primary_10_1590_1414_431x202010465 crossref_primary_10_1155_2008_314974 crossref_primary_10_3390_ijms20071707 crossref_primary_10_2337_db18_0626 crossref_primary_10_1089_thy_2007_0249 crossref_primary_10_1038_s41591_018_0019_5 crossref_primary_10_1016_j_atherosclerosis_2010_07_002 crossref_primary_10_1073_pnas_0904187106 crossref_primary_10_1681_ASN_2017020130 crossref_primary_10_3390_md17090518 crossref_primary_10_1074_jbc_M110_217349 crossref_primary_10_1007_s11064_015_1765_0 crossref_primary_10_1074_jbc_M707389200 crossref_primary_10_1242_jcs_113662 crossref_primary_10_3389_fphys_2015_00051 crossref_primary_10_1016_j_bbamcr_2010_10_007 crossref_primary_10_14814_phy2_14526 crossref_primary_10_1016_j_freeradbiomed_2023_07_012 crossref_primary_10_1089_thy_2007_0254 crossref_primary_10_1097_MCO_0b013e3282f0dbfb crossref_primary_10_1161_CIRCRESAHA_122_320395 crossref_primary_10_1039_C4FO00340C crossref_primary_10_3389_fcvm_2020_00056 crossref_primary_10_1093_gerona_glv070 crossref_primary_10_1016_j_bbalip_2018_05_004 crossref_primary_10_1007_s00204_014_1401_9 crossref_primary_10_3390_ijms23179575 crossref_primary_10_1002_rcm_6421 crossref_primary_10_1016_j_bbadis_2009_07_014 crossref_primary_10_1016_j_febslet_2010_05_030 crossref_primary_10_15857_ksep_2012_21_4_435 crossref_primary_10_1152_ajpendo_90352_2008 crossref_primary_10_1007_s00726_021_03028_1 crossref_primary_10_1016_j_meatsci_2011_05_015 crossref_primary_10_1016_j_preteyeres_2024_101306 crossref_primary_10_1371_journal_pbio_1001603 crossref_primary_10_1155_2020_3656419 crossref_primary_10_1007_s40200_019_00405_2 crossref_primary_10_1016_j_cmet_2010_02_006 crossref_primary_10_1016_j_semnephrol_2016_01_005 crossref_primary_10_1152_ajplung_00392_2014 crossref_primary_10_1194_jlr_M033415 crossref_primary_10_1155_2012_857142 crossref_primary_10_1007_s00726_015_2161_4 crossref_primary_10_1096_fj_07_8520com crossref_primary_10_1007_s00421_016_3480_1 crossref_primary_10_1016_j_ajpath_2014_12_009 crossref_primary_10_3109_07420528_2012_658127 crossref_primary_10_1186_s12944_020_01220_y crossref_primary_10_1113_jphysiol_2008_160150 crossref_primary_10_1172_JCI58662 crossref_primary_10_1016_j_tox_2015_01_001 crossref_primary_10_1016_j_mrfmmm_2014_09_005 crossref_primary_10_1096_fj_13_236331 crossref_primary_10_1007_s10522_014_9515_2 crossref_primary_10_1089_ars_2008_2241 crossref_primary_10_1042_CS20140688 crossref_primary_10_1097_BOR_0b013e3282f20347 crossref_primary_10_1016_j_jnutbio_2013_08_014 crossref_primary_10_3390_ijms23020786 crossref_primary_10_1111_cbdd_13506 crossref_primary_10_1002_cbf_3111 crossref_primary_10_1210_en_2012_1334 crossref_primary_10_3390_nu10070836 crossref_primary_10_1155_2008_542694 crossref_primary_10_1002_rmb2_12428 crossref_primary_10_1016_j_ymgme_2018_10_004 crossref_primary_10_1007_s11906_022_01184_7 crossref_primary_10_1016_j_cryobiol_2020_02_010 crossref_primary_10_18632_aging_101131 crossref_primary_10_1038_nature11040 crossref_primary_10_1093_toxsci_kfae113 crossref_primary_10_1111_jcmm_17189 crossref_primary_10_1113_jphysiol_2014_283820 crossref_primary_10_1016_j_tox_2018_11_012 crossref_primary_10_3945_ajcn_112_046417 crossref_primary_10_1016_j_prostaglandins_2016_07_004 crossref_primary_10_1172_JCI66062 crossref_primary_10_1210_er_2006_0041 crossref_primary_10_1016_j_abb_2019_03_019 crossref_primary_10_1007_BF03195694 crossref_primary_10_1152_ajpendo_00339_2020 crossref_primary_10_1155_2012_768304 crossref_primary_10_5713_ajas_15_0794 crossref_primary_10_1016_j_freeradbiomed_2012_09_014 crossref_primary_10_1016_j_yjmcc_2012_12_007 crossref_primary_10_1177_0748730411401579 crossref_primary_10_1016_j_freeradbiomed_2017_08_014 crossref_primary_10_1681_ASN_2010060643 crossref_primary_10_1016_j_bbabio_2008_04_024 crossref_primary_10_1074_jbc_M706986200 crossref_primary_10_1016_j_reprotox_2014_09_004 crossref_primary_10_1111_j_1440_1681_2009_05311_x crossref_primary_10_1186_s12920_022_01428_0 crossref_primary_10_1016_j_jff_2023_105825 crossref_primary_10_1038_nm_4057 crossref_primary_10_1016_j_cell_2011_10_017 crossref_primary_10_1002_jnr_22068 crossref_primary_10_3389_fphar_2023_1117337 crossref_primary_10_1016_j_nbd_2018_09_016 crossref_primary_10_1016_j_bbrc_2011_04_012 crossref_primary_10_1016_j_iliver_2023_01_002 crossref_primary_10_1242_jcs_072272 crossref_primary_10_1074_jbc_M111_227496 crossref_primary_10_1093_hmg_ddt603 crossref_primary_10_1152_physiolgenomics_90217_2008 crossref_primary_10_1038_s41598_022_10521_4 |
Cites_doi | 10.1210/en.2006-0070 10.1074/jbc.M210486200 10.1038/35093131 10.1210/er.2004-0018 10.1038/ng1180 10.1128/MCB.20.7.2411-2422.2000 10.1016/j.cell.2004.09.013 10.1038/nature01667 10.1074/jbc.M206324200 10.1161/01.RES.0000141774.29937.e3 10.1016/0092-8674(94)90006-X 10.1172/JCI27794 10.1073/pnas.1232352100 10.1172/JCI21752 10.1073/pnas.1032913100 10.1042/bj20030200 10.1074/jbc.M201134200 10.1074/jbc.M405423200 10.1016/S0140-6736(06)68970-8 10.1152/ajpendo.2001.281.6.E1340 10.1073/pnas.0308686101 10.1038/oby.2003.163 10.1126/science.286.5443.1368 10.1096/fj.02-0367com 10.1073/pnas.0401401101 10.1038/nature00904 10.1101/gad.1152204 10.1146/annurev.cellbio.16.1.145 10.1074/jbc.C100631200 10.1074/jbc.M301850200 10.1016/S1097-2765(01)00390-2 10.1038/35093050 10.1016/j.cell.2005.06.040 10.1073/pnas.252625599 10.1172/JCI21889 10.1172/JCI24405 10.1074/jbc.M600050200 10.1101/gad.1395406 10.1128/MCB.21.11.3738-3749.2001 10.1007/s00125-006-0268-6 10.1073/pnas.171184698 10.1152/jappl.2000.88.6.2219 10.1126/science.1104343 10.1161/01.RES.0000117088.36577.EB 10.1016/S1097-2765(00)00031-9 10.1016/j.cell.2006.06.010 10.1038/sj.ijo.0802482 10.1126/science.1079368 10.1016/j.cmet.2006.01.001 10.1128/MCB.24.7.3057-3067.2004 10.1074/jbc.M303643200 10.1172/JCI25151 10.1016/j.ddstr.2005.05.001 10.1073/pnas.061035098 10.1016/j.cell.2004.11.043 10.1016/j.cmet.2006.04.013 10.1038/nature03354 10.2337/diabetes.52.3.642 10.1074/jbc.M512636200 10.1016/j.cmet.2005.05.004 10.1038/sj.ijo.0802905 10.1016/j.cmet.2006.08.005 10.1016/S0092-8674(00)81410-5 10.1038/nm1044 10.1016/j.cell.2004.08.007 10.1038/nm1005-1049 10.1136/bmj.320.7250.1647 10.1172/JCI10268 10.1016/S0092-8674(00)80611-X 10.1016/j.cmet.2005.08.010 10.1371/journal.pbio.0030101 10.1016/j.cmet.2005.03.002 10.1210/er.2002-0012 10.1006/geno.1999.5977 10.1038/35007527 10.1073/pnas.0730870100 10.1172/JCI200317741 10.1073/pnas.0337639100 10.1101/gad.8.10.1224 10.1016/S1534-5807(03)00170-9 10.1101/gad.1295005 10.1016/S1097-2765(03)00391-5 10.1074/jbc.M305235200 10.1074/jbc.M205641200 10.1073/pnas.2135217100 10.1073/pnas.0603615103 |
ContentType | Journal Article |
Copyright | Copyright © 2006 by The Endocrine Society 2006 Copyright © 2006 by The Endocrine Society |
Copyright_xml | – notice: Copyright © 2006 by The Endocrine Society 2006 – notice: Copyright © 2006 by The Endocrine Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 8FD C1K FR3 H94 K9. P64 RC3 7X8 |
DOI | 10.1210/er.2006-0037 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1945-7189 |
EndPage | 735 |
ExternalDocumentID | 17018837 10_1210_er_2006_0037 00003599-200612000-00005 10.1210/er.2006-0037 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: DK61562 – fundername: NIDDK NIH HHS grantid: DK54477 |
GroupedDBID | --- -~X .55 .GJ .XZ 0R~ 0VX 18M 1TH 2WC 4.4 48X 53G 5GY 5RE 5RS 5YH AABZA AACZT AAIMJ AAPQZ AAPXW AARHZ AAUAY AAVAP ABEJV ABJNI ABMNT ABNHQ ABOCM ABPQP ABPTD ABQNK ABWST ABXVV ACGFO ACGFS ACIPB ACPRK ACYHN ADBBV ADGKP ADGZP ADHKW ADQBN ADRTK ADVEK AELWJ AEMDU AENEX AENZO AETBJ AEWNT AFFNX AFFZL AFGWE AFOFC AFRAH AFXAL AGINJ AGQXC AGUTN AHMBA AJEEA ALMA_UNASSIGNED_HOLDINGS APIBT ARIXL ATGXG BAWUL BAYMD BCGUY BCRHZ BEYMZ BSWAC BTRTY C1A C45 CDBKE CS3 DAKXR DIK E3Z EBS EJD ENERS F5P FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 HZ~ IH2 J5H KBUDW KOP KQ8 KSI KSN L7B M5~ MHKGH MVM N4W NLBLG NOMLY NOYVH NVLIB O9- OAUYM ODMLO ODZKP OFXIZ OGROG OJZSN OK1 OPAEJ OVD OVIDX REU ROX ROZ TEORI TJX TLC TR2 W8F WOQ X7M YHG YOC 08P 29G 7X7 88E 8FI 8FJ AAJQQ AAPGJ AAUQX AAWDT ABDFA ABGNP ABUWG ABVGC ABXZS ACFRR ACUTJ ACVCV ACZBC ADMTO ADNBA AEMQT AFFQV AFKRA AFYAG AGKRT AGMDO AGORE AHGBF AHMMS AI. AJBYB AJDVS ALXQX APJGH AQDSO AQKUS AVNTJ BENPR BPHCQ BVXVI CCPQU EIHJH EMOBN FYUFA HMCUK IAO IHR INH ITC M1P MBLQV NU- OBFPC PHGZM PHGZT PQQKQ PROAC PSQYO TMA UKHRP VH1 X52 ZGI ZXP AAYXX ADGHP CITATION 3V. CGR CUY CVF ECM EIF NPM VXZ 7QG 7QL 7QP 7T5 7TK 7TM 8FD C1K FR3 H94 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3785-9b8ce32fd1ed32a54c36b81a017c0987bca4b81d0be0c82f5577a0d8d977ad173 |
ISSN | 0163-769X |
IngestDate | Thu Jul 10 17:39:49 EDT 2025 Fri Jul 11 15:38:55 EDT 2025 Mon Jun 30 14:26:30 EDT 2025 Wed Feb 19 01:44:00 EST 2025 Thu Apr 24 23:09:10 EDT 2025 Tue Jul 01 04:15:37 EDT 2025 Fri May 16 03:50:58 EDT 2025 Tue Nov 19 12:02:18 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3785-9b8ce32fd1ed32a54c36b81a017c0987bca4b81d0be0c82f5577a0d8d977ad173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Review-3 |
OpenAccessLink | https://academic.oup.com/edrv/article-pdf/27/7/728/8862202/edrv0728.pdf |
PMID | 17018837 |
PQID | 3129857761 |
PQPubID | 2046247 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_68285310 proquest_miscellaneous_19513524 proquest_journals_3129857761 pubmed_primary_17018837 crossref_citationtrail_10_1210_er_2006_0037 crossref_primary_10_1210_er_2006_0037 wolterskluwer_health_00003599-200612000-00005 oup_primary_10_1210_er_2006-0037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20061201 2006-December 2006-12-01 2006-Dec |
PublicationDateYYYYMMDD | 2006-12-01 |
PublicationDate_xml | – month: 12 year: 2006 text: 20061201 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cary |
PublicationTitle | Endocrine reviews |
PublicationTitleAlternate | Endocr Rev |
PublicationYear | 2006 |
Publisher | Oxford University Press Copyright by The Endocrine Society |
Publisher_xml | – name: Oxford University Press – name: Copyright by The Endocrine Society |
References | Knutti (2019041122001671600_R48) 2001; 98 Leung (2019041122001671600_R63) 2004; 118 Mootha (2019041122001671600_R71) 2003; 34 Moore (2019041122001671600_R53) 2003; 278 Lehman (2019041122001671600_R85) 2000; 106 Lin (2019041122001671600_R16) 2005; 1 Puigserver (2019041122001671600_R47) 2001; 8 Lowell (2019041122001671600_R69) 2005; 307 Handschin (2019041122001671600_R37) 2003; 100 Michael (2019041122001671600_R27) 2001; 98 Wilson-Fritch (2019041122001671600_R76) 2004; 114 Hondares (2019041122001671600_R41) 2006; 147 Tontonoz (2019041122001671600_R2) 1994; 8 Kressler (2019041122001671600_R13) 2002; 277 Andersson (2019041122001671600_R14) 2001; 21 Borgius (2019041122001671600_R54) 2002; 277 Koo (2019041122001671600_R26) 2004; 10 Puigserver (2019041122001671600_R5) 1998; 92 Wu (2019041122001671600_R56) 2005; 26 Taubert (2019041122001671600_R17) 2006; 20 Yang (2019041122001671600_R75) 2003; 11 Morino (2019041122001671600_R73) 2005; 115 Schreiber (2019041122001671600_R11) 2004; 101 Wu (2019041122001671600_R7) 1999; 98 Lin (2019041122001671600_R31) 2003; 278 Phillips (2019041122001671600_R80) 2005; 11 Knutti (2019041122001671600_R9) 2000; 20 Mootha (2019041122001671600_R10) 2004; 101 Burgess (2019041122001671600_R25) 2006; 281 Lerin (2019041122001671600_R52) 2006; 3 Yoon (2019041122001671600_R21) 2001; 413 Daitoku (2019041122001671600_R43) 2003; 52 Bhalla (2019041122001671600_R55) 2004; 279 Lowell (2019041122001671600_R4) 2000; 404 Teyssier (2019041122001671600_R51) 2005; 19 Fan (2019041122001671600_R49) 2004; 18 Tontonoz (2019041122001671600_R3) 1994; 79 Puigserver (2019041122001671600_R42) 2003; 423 Semple (2019041122001671600_R74) 2004; 28 Handschin (2019041122001671600_R24) 2005; 122 Leone (2019041122001671600_R68) 2005; 3 Ling (2019041122001671600_R72) 2004; 114 Tiraby (2019041122001671600_R6) 2003; 278 Finck (2019041122001671600_R34) 2006; 116 Rodgers (2019041122001671600_R50) 2005; 434 Finck (2019041122001671600_R64) 2006; 4 Winder (2019041122001671600_R58) 2000; 88 Arany (2019041122001671600_R84) 2006; 103 Arany (2019041122001671600_R83) 2005; 1 Rhee (2019041122001671600_R23) 2006; 281 St-Pierre (2019041122001671600_R15) 2003; 278 Puigserver (2019041122001671600_R18) 1999; 286 Schapira (2019041122001671600_R66) 2006; 368 Lin (2019041122001671600_R30) 2005; 120 Lin (2019041122001671600_R12) 2002; 277 Thadani (2019041122001671600_R79) 2000; 320 Wallberg (2019041122001671600_R19) 2003; 12 Chan (2019041122001671600_R65) 2006; 125 Handschin (2019041122001671600_R78) 2005; 2 Rhee (2019041122001671600_R46) 2003; 100 Meirhaeghe (2019041122001671600_R60) 2003; 373 Huss (2019041122001671600_R82) 2005; 115 Monsalve (2019041122001671600_R20) 2000; 6 Yoon (2019041122001671600_R77) 2003; 5 Cao (2019041122001671600_R38) 2004; 24 Herzig (2019041122001671600_R22) 2001; 413 Lin (2019041122001671600_R28) 2002; 418 Lin (2019041122001671600_R29) 2004; 119 Patti (2019041122001671600_R70) 2003; 100 Nisoli (2019041122001671600_R39) 2003; 299 Huss (2019041122001671600_R81) 2004; 95 Zong (2019041122001671600_R57) 2002; 99 Soyal (2019041122001671600_R35) 2006; 49 Kamei (2019041122001671600_R62) 2003; 100 Puigserver (2019041122001671600_R36) 2005; 29 Rosen (2019041122001671600_R1) 2000; 16 Czubryt (2019041122001671600_R40) 2003; 100 Huss (2019041122001671600_R45) 2002; 277 Baar (2019041122001671600_R61) 2002; 16 Puigserver (2019041122001671600_R33) 2003; 24 Russell (2019041122001671600_R86) 2004; 94 Bergeron (2019041122001671600_R59) 2001; 281 Wang (2019041122001671600_R44) 2005; 2 Schon (2019041122001671600_R67) 2003; 111 Esterbauer (2019041122001671600_R8) 1999; 62 Wolfrum (2019041122001671600_R32) 2006; 3 |
References_xml | – volume: 147 start-page: 2829 year: 2006 ident: 2019041122001671600_R41 article-title: Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1α gene transcription: an autoregulatory loop controls PGC-1α expression in adipocytes via peroxisome proliferator-activated receptor-γ coactivation. publication-title: Endocrinology doi: 10.1210/en.2006-0070 – volume: 278 start-page: 17263 year: 2003 ident: 2019041122001671600_R53 article-title: Upstream stimulatory factor represses the induction of carnitine palmitoyltransferase-Iβ expression by PGC-1. publication-title: J Biol Chem doi: 10.1074/jbc.M210486200 – volume: 413 start-page: 179 year: 2001 ident: 2019041122001671600_R22 article-title: CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. publication-title: Nature doi: 10.1038/35093131 – volume: 26 start-page: 393 year: 2005 ident: 2019041122001671600_R56 article-title: Transcriptional regulation by steroid receptor coactivator phosphorylation. publication-title: Endocr Rev doi: 10.1210/er.2004-0018 – volume: 34 start-page: 267 year: 2003 ident: 2019041122001671600_R71 article-title: PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. publication-title: Nat Genet doi: 10.1038/ng1180 – volume: 20 start-page: 2411 year: 2000 ident: 2019041122001671600_R9 article-title: A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. publication-title: Mol Cell Biol doi: 10.1128/MCB.20.7.2411-2422.2000 – volume: 119 start-page: 121 year: 2004 ident: 2019041122001671600_R29 article-title: Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. publication-title: Cell doi: 10.1016/j.cell.2004.09.013 – volume: 423 start-page: 550 year: 2003 ident: 2019041122001671600_R42 article-title: Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. publication-title: Nature doi: 10.1038/nature01667 – volume: 277 start-page: 40265 year: 2002 ident: 2019041122001671600_R45 article-title: Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. Identification of novel leucine-rich interaction motif within PGC-1α. publication-title: J Biol Chem doi: 10.1074/jbc.M206324200 – volume: 95 start-page: 568 year: 2004 ident: 2019041122001671600_R81 article-title: Nuclear receptor signaling and cardiac energetics. publication-title: Circ Res doi: 10.1161/01.RES.0000141774.29937.e3 – volume: 79 start-page: 1147 year: 1994 ident: 2019041122001671600_R3 article-title: Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. publication-title: Cell doi: 10.1016/0092-8674(94)90006-X – volume: 116 start-page: 615 year: 2006 ident: 2019041122001671600_R34 article-title: PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. publication-title: J Clin Invest doi: 10.1172/JCI27794 – volume: 100 start-page: 7111 year: 2003 ident: 2019041122001671600_R37 article-title: An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1232352100 – volume: 114 start-page: 1281 year: 2004 ident: 2019041122001671600_R76 article-title: Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. publication-title: J Clin Invest doi: 10.1172/JCI21752 – volume: 100 start-page: 8466 year: 2003 ident: 2019041122001671600_R70 article-title: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1032913100 – volume: 373 start-page: 155 year: 2003 ident: 2019041122001671600_R60 article-title: Characterization of the human, mouse and rat PGC1β (peroxisome-proliferator-activated receptor-γ co-activator 1 β) gene in vitro and in vivo. publication-title: Biochem J doi: 10.1042/bj20030200 – volume: 277 start-page: 13918 year: 2002 ident: 2019041122001671600_R13 article-title: The PGC-1-related protein PERC is a selective coactivator of estrogen receptor α. publication-title: J Biol Chem doi: 10.1074/jbc.M201134200 – volume: 279 start-page: 45139 year: 2004 ident: 2019041122001671600_R55 article-title: Ligand-activated pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator PGC-1α. Functional implications in hepatic cholesterol and glucose metabolism. publication-title: J Biol Chem doi: 10.1074/jbc.M405423200 – volume: 368 start-page: 70 year: 2006 ident: 2019041122001671600_R66 article-title: Mitochondrial disease. publication-title: Lancet doi: 10.1016/S0140-6736(06)68970-8 – volume: 281 start-page: E1340 year: 2001 ident: 2019041122001671600_R59 article-title: Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.2001.281.6.E1340 – volume: 101 start-page: 6472 year: 2004 ident: 2019041122001671600_R11 article-title: The estrogen-related receptor α (ERRα) functions in PPARγ coactivator 1α (PGC-1α)-induced mitochondrial biogenesis. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0308686101 – volume: 11 start-page: 1182 year: 2003 ident: 2019041122001671600_R75 article-title: Reduced expression of FOXC2 and brown adipogenic genes in human subjects with insulin resistance. publication-title: Obes Res doi: 10.1038/oby.2003.163 – volume: 286 start-page: 1368 year: 1999 ident: 2019041122001671600_R18 article-title: Activation of PPARγ coactivator-1 through transcription factor docking. publication-title: Science doi: 10.1126/science.286.5443.1368 – volume: 16 start-page: 1879 year: 2002 ident: 2019041122001671600_R61 article-title: Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. publication-title: FASEB J doi: 10.1096/fj.02-0367com – volume: 101 start-page: 6570 year: 2004 ident: 2019041122001671600_R10 article-title: Errα and Gabpa/b specify PGC-1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0401401101 – volume: 418 start-page: 797 year: 2002 ident: 2019041122001671600_R28 article-title: Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. publication-title: Nature doi: 10.1038/nature00904 – volume: 18 start-page: 278 year: 2004 ident: 2019041122001671600_R49 article-title: Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α: modulation by p38 MAPK. publication-title: Genes Dev doi: 10.1101/gad.1152204 – volume: 16 start-page: 145 year: 2000 ident: 2019041122001671600_R1 article-title: Molecular regulation of adipogenesis. publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.16.1.145 – volume: 277 start-page: 1645 year: 2002 ident: 2019041122001671600_R12 article-title: Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. publication-title: J Biol Chem doi: 10.1074/jbc.C100631200 – volume: 278 start-page: 26597 year: 2003 ident: 2019041122001671600_R15 article-title: Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. publication-title: J Biol Chem doi: 10.1074/jbc.M301850200 – volume: 8 start-page: 971 year: 2001 ident: 2019041122001671600_R47 article-title: Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. publication-title: Mol Cell doi: 10.1016/S1097-2765(01)00390-2 – volume: 413 start-page: 131 year: 2001 ident: 2019041122001671600_R21 article-title: Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. publication-title: Nature doi: 10.1038/35093050 – volume: 122 start-page: 505 year: 2005 ident: 2019041122001671600_R24 article-title: Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α. publication-title: Cell doi: 10.1016/j.cell.2005.06.040 – volume: 99 start-page: 15983 year: 2002 ident: 2019041122001671600_R57 article-title: AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.252625599 – volume: 114 start-page: 1518 year: 2004 ident: 2019041122001671600_R72 article-title: Multiple environmental and genetic factors influence skeletal muscle PGC-1α and PGC-1β gene expression in twins. publication-title: J Clin Invest doi: 10.1172/JCI21889 – volume: 115 start-page: 547 year: 2005 ident: 2019041122001671600_R82 article-title: Mitochondrial energy metabolism in heart failure: a question of balance. publication-title: J Clin Invest doi: 10.1172/JCI24405 – volume: 281 start-page: 19000 year: 2006 ident: 2019041122001671600_R25 article-title: Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-deficient mice. publication-title: J Biol Chem doi: 10.1074/jbc.M600050200 – volume: 20 start-page: 1137 year: 2006 ident: 2019041122001671600_R17 article-title: A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. publication-title: Genes Dev doi: 10.1101/gad.1395406 – volume: 21 start-page: 3738 year: 2001 ident: 2019041122001671600_R14 article-title: Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. publication-title: Mol Cell Biol doi: 10.1128/MCB.21.11.3738-3749.2001 – volume: 49 start-page: 1477 year: 2006 ident: 2019041122001671600_R35 article-title: PGC-1α: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes. publication-title: Diabetologia doi: 10.1007/s00125-006-0268-6 – volume: 98 start-page: 9713 year: 2001 ident: 2019041122001671600_R48 article-title: Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.171184698 – volume: 88 start-page: 2219 year: 2000 ident: 2019041122001671600_R58 article-title: Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. publication-title: J Appl Physiol doi: 10.1152/jappl.2000.88.6.2219 – volume: 307 start-page: 384 year: 2005 ident: 2019041122001671600_R69 article-title: Mitochondrial dysfunction and type 2 diabetes. publication-title: Science doi: 10.1126/science.1104343 – volume: 94 start-page: 525 year: 2004 ident: 2019041122001671600_R86 article-title: Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. publication-title: Circ Res doi: 10.1161/01.RES.0000117088.36577.EB – volume: 6 start-page: 307 year: 2000 ident: 2019041122001671600_R20 article-title: Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. publication-title: Mol Cell doi: 10.1016/S1097-2765(00)00031-9 – volume: 125 start-page: 1241 year: 2006 ident: 2019041122001671600_R65 article-title: Mitochondria: dynamic organelles in disease, aging, and development. publication-title: Cell doi: 10.1016/j.cell.2006.06.010 – volume: 28 start-page: 176 year: 2004 ident: 2019041122001671600_R74 article-title: Expression of the thermogenic nuclear hormone receptor coactivator PGC-1α is reduced in the adipose tissue of morbidly obese subjects. publication-title: Int J Obes Relat Metab Disord doi: 10.1038/sj.ijo.0802482 – volume: 299 start-page: 896 year: 2003 ident: 2019041122001671600_R39 article-title: Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. publication-title: Science doi: 10.1126/science.1079368 – volume: 3 start-page: 99 year: 2006 ident: 2019041122001671600_R32 article-title: Coactivation of Foxa2 through Pgc-1β promotes liver fatty acid oxidation and triglyceride/VLDL secretion. publication-title: Cell Metab doi: 10.1016/j.cmet.2006.01.001 – volume: 24 start-page: 3057 year: 2004 ident: 2019041122001671600_R38 article-title: p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. publication-title: Mol Cell Biol doi: 10.1128/MCB.24.7.3057-3067.2004 – volume: 278 start-page: 30843 year: 2003 ident: 2019041122001671600_R31 article-title: PGC-1β in the regulation of hepatic glucose and energy metabolism. publication-title: J Biol Chem doi: 10.1074/jbc.M303643200 – volume: 115 start-page: 3587 year: 2005 ident: 2019041122001671600_R73 article-title: Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. publication-title: J Clin Invest doi: 10.1172/JCI25151 – volume: 2 start-page: 151 year: 2005 ident: 2019041122001671600_R78 article-title: Estrogen-related receptor α (ERRα): a novel target in type 2 diabetes. publication-title: Drug Discov Today Ther Strateg doi: 10.1016/j.ddstr.2005.05.001 – volume: 98 start-page: 3820 year: 2001 ident: 2019041122001671600_R27 article-title: Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.061035098 – volume: 120 start-page: 261 year: 2005 ident: 2019041122001671600_R30 article-title: Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. publication-title: Cell doi: 10.1016/j.cell.2004.11.043 – volume: 3 start-page: 429 year: 2006 ident: 2019041122001671600_R52 article-title: GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. publication-title: Cell Metab doi: 10.1016/j.cmet.2006.04.013 – volume: 434 start-page: 113 year: 2005 ident: 2019041122001671600_R50 article-title: Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. publication-title: Nature doi: 10.1038/nature03354 – volume: 52 start-page: 642 year: 2003 ident: 2019041122001671600_R43 article-title: Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. publication-title: Diabetes doi: 10.2337/diabetes.52.3.642 – volume: 281 start-page: 14683 year: 2006 ident: 2019041122001671600_R23 article-title: Partnership of PGC-1α and HNF4α in the regulation of lipoprotein metabolism. publication-title: J Biol Chem doi: 10.1074/jbc.M512636200 – volume: 1 start-page: 361 year: 2005 ident: 2019041122001671600_R16 article-title: Metabolic control through the PGC-1 family of transcription coactivators. publication-title: Cell Metab doi: 10.1016/j.cmet.2005.05.004 – volume: 29 start-page: S5 issue: Suppl 1 year: 2005 ident: 2019041122001671600_R36 article-title: Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-α publication-title: Int J Obes (Lond) doi: 10.1038/sj.ijo.0802905 – volume: 4 start-page: 199 year: 2006 ident: 2019041122001671600_R64 article-title: Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway. publication-title: Cell Metab doi: 10.1016/j.cmet.2006.08.005 – volume: 92 start-page: 829 year: 1998 ident: 2019041122001671600_R5 article-title: A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. publication-title: Cell doi: 10.1016/S0092-8674(00)81410-5 – volume: 10 start-page: 530 year: 2004 ident: 2019041122001671600_R26 article-title: PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. publication-title: Nat Med doi: 10.1038/nm1044 – volume: 118 start-page: 453 year: 2004 ident: 2019041122001671600_R63 article-title: One nucleotide in a κB site can determine cofactor specificity for NF-κB dimers. publication-title: Cell doi: 10.1016/j.cell.2004.08.007 – volume: 11 start-page: 1049 year: 2005 ident: 2019041122001671600_R80 article-title: Fast track to the porphyrias. publication-title: Nat Med doi: 10.1038/nm1005-1049 – volume: 320 start-page: 1647 year: 2000 ident: 2019041122001671600_R79 article-title: Diagnosis and management of porphyria. publication-title: Br Med J doi: 10.1136/bmj.320.7250.1647 – volume: 106 start-page: 847 year: 2000 ident: 2019041122001671600_R85 article-title: Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. publication-title: J Clin Invest doi: 10.1172/JCI10268 – volume: 98 start-page: 115 year: 1999 ident: 2019041122001671600_R7 article-title: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. publication-title: Cell doi: 10.1016/S0092-8674(00)80611-X – volume: 2 start-page: 227 year: 2005 ident: 2019041122001671600_R44 article-title: The orphan nuclear receptor SHP regulates PGC-1α expression and energy production in brown adipocytes. publication-title: Cell Metab doi: 10.1016/j.cmet.2005.08.010 – volume: 3 start-page: e101 year: 2005 ident: 2019041122001671600_R68 article-title: PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis publication-title: PLoS Biol doi: 10.1371/journal.pbio.0030101 – volume: 1 start-page: 259 year: 2005 ident: 2019041122001671600_R83 article-title: Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. publication-title: Cell Metab doi: 10.1016/j.cmet.2005.03.002 – volume: 24 start-page: 78 year: 2003 ident: 2019041122001671600_R33 article-title: Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. publication-title: Endocr Rev doi: 10.1210/er.2002-0012 – volume: 62 start-page: 98 year: 1999 ident: 2019041122001671600_R8 article-title: Human peroxisome proliferator activated receptor γ coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. publication-title: Genomics doi: 10.1006/geno.1999.5977 – volume: 404 start-page: 652 year: 2000 ident: 2019041122001671600_R4 article-title: Towards a molecular understanding of adaptive thermogenesis. publication-title: Nature doi: 10.1038/35007527 – volume: 100 start-page: 4012 year: 2003 ident: 2019041122001671600_R46 article-title: Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4α in gluconeogenesis. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0730870100 – volume: 111 start-page: 303 year: 2003 ident: 2019041122001671600_R67 article-title: Neuronal degeneration and mitochondrial dysfunction. publication-title: J Clin Invest doi: 10.1172/JCI200317741 – volume: 100 start-page: 1711 year: 2003 ident: 2019041122001671600_R40 article-title: Regulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and mitochondrial function by MEF2 and HDAC5. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0337639100 – volume: 8 start-page: 1224 year: 1994 ident: 2019041122001671600_R2 article-title: mPPARγ2: tissue-specific regulator of an adipocyte enhancer. publication-title: Genes Dev doi: 10.1101/gad.8.10.1224 – volume: 5 start-page: 73 year: 2003 ident: 2019041122001671600_R77 article-title: Suppression of β cell energy metabolism and insulin release by PGC-1α. publication-title: Dev Cell doi: 10.1016/S1534-5807(03)00170-9 – volume: 19 start-page: 1466 year: 2005 ident: 2019041122001671600_R51 article-title: Activation of nuclear receptor coactivator PGC-1α by arginine methylation. publication-title: Genes Dev doi: 10.1101/gad.1295005 – volume: 12 start-page: 1137 year: 2003 ident: 2019041122001671600_R19 article-title: Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1α. publication-title: Mol Cell doi: 10.1016/S1097-2765(03)00391-5 – volume: 278 start-page: 33370 year: 2003 ident: 2019041122001671600_R6 article-title: Acquirement of brown fat cell features by human white adipocytes. publication-title: J Biol Chem doi: 10.1074/jbc.M305235200 – volume: 277 start-page: 49761 year: 2002 ident: 2019041122001671600_R54 article-title: Glucocorticoid signaling is perturbed by the atypical orphan receptor and corepressor SHP. publication-title: J Biol Chem doi: 10.1074/jbc.M205641200 – volume: 100 start-page: 12378 year: 2003 ident: 2019041122001671600_R62 article-title: PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2135217100 – volume: 103 start-page: 10086 year: 2006 ident: 2019041122001671600_R84 article-title: Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0603615103 |
SSID | ssj0004089 |
Score | 2.470964 |
SecondaryResourceType | review_article |
Snippet | Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors.... |
SourceID | proquest pubmed crossref wolterskluwer oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 728 |
SubjectTerms | Cardiomyopathies - genetics Cardiomyopathies - physiopathology Cardiomyopathy Carrier Proteins - genetics Carrier Proteins - physiology Diabetes mellitus Diabetes Mellitus - genetics Diabetes Mellitus - physiopathology Energy balance Energy metabolism Energy Metabolism - genetics Energy Metabolism - physiology Gene Expression Regulation Gene regulation Heat-Shock Proteins - genetics Heat-Shock Proteins - physiology Homeostasis Homeostasis - genetics Homeostasis - physiology Humans Metabolic pathways Mitochondrial Diseases - genetics Mitochondrial Diseases - physiopathology Neurodegeneration Neurodegenerative Diseases - genetics Neurodegenerative Diseases - physiopathology Obesity - genetics Obesity - physiopathology Oxidative metabolism Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha Peroxisome proliferator-activated receptors Receptors Transcription factors Transcription Factors - genetics Transcription Factors - physiology |
Title | Peroxisome Proliferator-Activated Receptor γ Coactivator 1 Coactivators, Energy Homeostasis, and Metabolism |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003599-200612000-00005 https://www.ncbi.nlm.nih.gov/pubmed/17018837 https://www.proquest.com/docview/3129857761 https://www.proquest.com/docview/19513524 https://www.proquest.com/docview/68285310 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSAiEEGx8FAb4AXjpjOJ8OX2cYNOAbfDQSn2LHNsBRJNMTcfXX8-d43wUVvHxEjWO66T9nS939v3uCHkacy1ylXOWe55koYwnDM0SphOuEl-GXNhiEyen8dEsfDOP5n1lOssuWWUv1I8LeSX_gyq0Aa7Ikv0HZLtBoQE-A75wBITh-FcYvzfL6tunuiqQ7VQtMEoFfWiGZIUvEm1J0GfmDJrGH2RRyLGq3CVo4cMzi6ZpeIAfYbwKjMa6ST-AK-uFWYGwLNp0g-1KfqkrhexBR4Cpe3VW6hqDNNfTF_yyU-_WXq10uUXZfvmhD-VwK5JxwERs6-F2KrWh-zvREQP9KBom-G96GxxPRNAmaI0ZJsXp30_tnvzpu_RwdnycTg_m08vkig9-AZasePX6bU-E9WzNw-6ZHNMBaUrDsddskDVe48C9uE5ufK0wYqH-bAkLA7NjeovcdP4C3W_Av00umXKb7OyXAFrxnT6nNoLXbo1sk6snLlBih1S9aNCLRYO2okGtaNCBMFA-PKv3aCMYdCAYexQgpr1Y3CGzw4PpyyPmamswFYgkYpMsUSbwc82NDnwZhSqIs4RLUNDKmyQiUzKEc-1lxoNJm0eRENLTiQZ_QWougrtkq6xKc5_QWPjQNc8kGJdh5ssMVHykIvgquNYmkyMybv_tVLnE81j_ZJGiAwrYpGaJ1VAxvjIQI_Ks633WJFzZ0I8CcJu6sKbLbotq6mZtnQZg4CbwY2I-Ik-6y6BTcaNMlqY6r1MObgc4JuHmHjEmfgTPaETuNdLSP4jweJLgzdma-KQNrxmDPTBr5gQVGXgXLrGDFz34470ekmv9BNwlW6vluXkEFvEqe2xnwU8rnLjb |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peroxisome+proliferator-activated+receptor+gamma+coactivator+1+coactivators%2C+energy+homeostasis%2C+and+metabolism&rft.jtitle=Endocrine+reviews&rft.au=Handschin%2C+Christophe&rft.au=Spiegelman%2C+Bruce+M&rft.date=2006-12-01&rft.issn=0163-769X&rft.volume=27&rft.issue=7&rft.spage=728&rft_id=info:doi/10.1210%2Fer.2006-0037&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-769X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-769X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-769X&client=summon |