Polyphenols in Naruto Kintoki sweet potato enhanced antiallergic activity after baking and microwave cooking
The antiallergic activity of extracts of Naruto Kintoki sweet potato peel was enhanced after cooking the peel using three conventional methods. Using 400 µg/mL extracts, baking showed the highest suppression of β-hexosaminidase release (36.9%), followed by microwaving (41.9%) and boiling (64.2%). Si...
Saved in:
Published in | FOOD SCIENCE AND TECHNOLOGY RESEARCH Vol. 28; no. 3; pp. 275 - 283 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Tsukuba
Japanese Society for Food Science and Technology
2022
The Japanese Society for Food Science and Technology Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The antiallergic activity of extracts of Naruto Kintoki sweet potato peel was enhanced after cooking the peel using three conventional methods. Using 400 µg/mL extracts, baking showed the highest suppression of β-hexosaminidase release (36.9%), followed by microwaving (41.9%) and boiling (64.2%). Significant suppression of β-hexosaminidase release from RBL-2H3 cells in response to Naruto Kintoki peel extract was attributed to compounds 9 (r = 0.91, p < 0.01) and 11 (r = 0.76, p < 0.05). UPLC/ESI-Q-TOF-MS analyses of compounds 5 and 8 clarified the existence of two sulfates of flavonol aglycones (3, 5, 3′-trihydroxy-7, 4′-dimethoxyflavone 3-O-sulfate and 3, 5-dihydroxy-7, 4′-dimethoxyflavone 3-O-sulfate). Baking the sweet potato peel changed compounds 5 and 8 to compounds 9 and 11 with enhanced antiallergic activity. Specifically, IC50 values changed from 11.0 µg/mL (5) to 4.1 µg/mL (9) and from 12.1 µg/mL (8) to 4.4 µg/mL (11). We found those four chemicals contributed to the observed antiallergic activity of Naruto Kintoki sweet potato peel extracts. |
---|---|
ISSN: | 1344-6606 1881-3984 |
DOI: | 10.3136/fstr.FSTR-D-21-00268 |