Evidence for the binding mode of porphyrins to G-quadruplex DNA

Interactions of porphyrin derivatives 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphyrin (TMPyP4) and 5,10,15,20-tetrakis(N-propylpyridinium-4-yl)-21H,23H-porphyrin (TPrPyP4) with human telomeric AG(3)(T(2)AG(3))(3) G-quadruplex DNAs in 150 mM K(+)-containing buffer in the presence or ab...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 11; no. 20; pp. 4025 - 4032
Main Authors Wei, Chunying, Jia, Guoqing, Zhou, Jun, Han, Gaoyi, Li, Can
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Interactions of porphyrin derivatives 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphyrin (TMPyP4) and 5,10,15,20-tetrakis(N-propylpyridinium-4-yl)-21H,23H-porphyrin (TPrPyP4) with human telomeric AG(3)(T(2)AG(3))(3) G-quadruplex DNAs in 150 mM K(+)-containing buffer in the presence or absence of 40% molecular crowding agent poly(ethylene glycol) (PEG 200) were studied by absorption titration fitting and time-resolved fluorescence spectroscopy. The results show that two TMPyP4 (or TPrPyP4) molecules bind to antiparallel/parallel hybrid structure of AG(3)(T(2)AG(3))(3) G-quadruplex by end-stacking and outside groove binding modes in the absence of PEG. Interestingly, in the presence of PEG one porphyrin molecule is stacked between two parallel AG(3)(T(2)AG(3))(3) G- quadruplexes to form a sandwich structure, another porphyrin molecule is bound to the groove of the G-quadruplex. The interactions of TMPyP4 with different structures of AG(3)(T(2)AG(3))(3) G-quadruplex are non cooperative, the binding constants of two independent binding sites are 1.07 x 10(6) and 4.42 x 10(8) M(-1) for an antiparallel/parallel hybrid structure of AG(3)(T(2)AG(3))(3), 8.67 x 10(5) and 2.26 x 10(8) M(-1) for parallel-stranded AG(3)(T(2)AG(3))(3) G-quadruplex. Conversely, the two binding sites are cooperative for TPrPyP4, the apparent association constants are 5.58 x 10(6) and 1.24 x 10(7) M(-1) for parallel-stranded and antiparallel/parallel hybrid structures of AG(3)(T(2)AG(3))(3) G-quadruplex, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1463-9076
1463-9084
DOI:10.1039/b901027k