Comprehensive Validation of Cardiovascular Magnetic Resonance Techniques for the Assessment of Myocardial Extracellular Volume
Extracellular matrix expansion is a key element of ventricular remodeling and a potential therapeutic target. Cardiovascular magnetic resonance (CMR) T1-mapping techniques are increasingly used to evaluate myocardial extracellular volume (ECV); however, the most widely applied methods are without hi...
Saved in:
Published in | Circulation. Cardiovascular imaging Vol. 6; no. 3; pp. 373 - 383 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.05.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Extracellular matrix expansion is a key element of ventricular remodeling and a potential therapeutic target. Cardiovascular magnetic resonance (CMR) T1-mapping techniques are increasingly used to evaluate myocardial extracellular volume (ECV); however, the most widely applied methods are without histological validation. Our aim was to perform comprehensive validation of (1) dynamic-equilibrium CMR (DynEq-CMR), where ECV is quantified using hematocrit-adjusted myocardial and blood T1 values measured before and after gadolinium bolus; and (2) isolated measurement of myocardial T1, used as an ECV surrogate.
Whole-heart histological validation was performed using 96 tissue samples, analyzed for picrosirius red collagen volume fraction, obtained from each of 16 segments of the explanted hearts of 6 patients undergoing heart transplantation who had prospectively undergone CMR before transplantation (median interval between CMR and transplantation, 29 days). DynEq-CMR-derived ECV was calculated from T1 measurements made using a modified Look-Locker inversion recovery sequence before and 10 and 15 minutes post contrast. In addition, ECV was measured 2 to 20 minutes post contrast in 30 healthy volunteers. There was a strong linear relationship between DynEq-CMR-derived ECV and histological collagen volume fraction (P<0.001; within-subject: r=0.745; P<0.001; r(2)=0.555 and between-subject: r=0.945; P<0.01; r(2)=0.893; for ECV calculated using 15-minute postcontrast T1). Correlation was maintained throughout the entire heart. Isolated postcontrast T1 measurement showed significant within-subject correlation with histological collagen volume fraction (r=-0.741; P<0.001; r(2)=0.550 for 15-minute postcontrast T1), but between-subject correlations were not significant. DynEq-CMR-derived ECV varied significantly according to contrast dose, myocardial region, and sex.
DynEq-CMR-derived ECV shows a good correlation with histological collagen volume fraction throughout the whole heart. Isolated postcontrast T1 measurement is insufficient for ECV assessment. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ISSN: | 1941-9651 1942-0080 1942-0080 |
DOI: | 10.1161/CIRCIMAGING.112.000192 |