Distribution of polycyclic aromatic hydrocarbons in indoor/outdoor window films and the indoor film/air partition of northeastern Chinese college dormitories
Indoor window films can represent short-term air pollution conditions of indoor environment through rapidly capturing organic contaminants as effective passive air samplers. To investigate the temporal variation, influence factors of polycyclic aromatic hydrocarbons (PAHs) in indoor window films, an...
Saved in:
Published in | Chemosphere (Oxford) Vol. 322; p. 138136 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Indoor window films can represent short-term air pollution conditions of indoor environment through rapidly capturing organic contaminants as effective passive air samplers. To investigate the temporal variation, influence factors of polycyclic aromatic hydrocarbons (PAHs) in indoor window films, and the exchange behavior with gas phase in college dormitories, 42 pairs window films of interior and exterior window surfaces and corresponding indoor gas phase and dust samples were collected monthly in six selected dormitories, Harbin, China, from August to December 2019 and September 2020. The average concentration of ∑16PAHs in indoor window films (398 ng/m2) was significantly (p < 0.01) lower than that in outdoors (652 ng/m2). In addition, the median indoor/outdoor ∑16PAHs concentration ratio was close to 0.5, showing that outdoor air acted as a major PAH source to indoor environment. The 5-ring PAHs were mostly dominant in window films whereas the 3-ring PAHs contributed mostly in gas phase. 3-ring PAHs and 4-ring PAHs were both important contributors for dormitory dust. Window films showed stable temporal variation, i.e. PAH concentrations in heating months were higher than those in non-heating months. The atmospheric O3 concentration was the main influence factor of PAHs in indoor window films. PAHs with low molecular weight in indoor window films rapidly reached film/air equilibrium phase within in dozens of hours. The large deviation in the slope of the log KF-A versus log KOA regression line from that in reported equilibrium formula might be the difference between the window film composition and octanol.
[Display omitted]
•Elevated heavy polycyclic aromatic hydrocarbon (PAH) accumulation in indoor films.•PAHs in films and gas phase showed similar temporal variation affected by heating.•Light PAHs rapidly reached indoor film/air equilibrium phase within dozens of hours.•Deviation in slope of regression line with film/air equilibrium formula was explored. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2023.138136 |