Photosynthetic apparatus performance in function of the cytokinins used during the in vitro multiplication of Aechmea blanchetiana (Bromeliaceae)
During the in vitro multiplication phase, the employment of cytokinins may be necessary to induce side shoots of many plant species. However, the mechanism by which cytokinins influence the physiology of plants in vitro is not well understood. Therefore, the objective of this study was to assess the...
Saved in:
Published in | Plant cell, tissue and organ culture Vol. 133; no. 3; pp. 339 - 350 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.06.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | During the in vitro multiplication phase, the employment of cytokinins may be necessary to induce side shoots of many plant species. However, the mechanism by which cytokinins influence the physiology of plants in vitro is not well understood. Therefore, the objective of this study was to assess the influence of two cytokinins in function of concentration on the o photosynthetic apparatus performance and the stomatal functionality of
Aechmea blanchetiana
during in vitro multiplication. Plants previously established in vitro were transferred to MS culture media supplemented with 6-benzylaminopurine (BAP) or 6-furfurylaminopurine (kinetin—KIN) at concentration of 0, 5, 10, 15 or 20 µM. After 60 days of exposure to the plant growth regulators, the multiplication rate, photosynthetic apparatus performance and stomatal functionality were assessed. The use of KIN did not induce the formation of microshoots. On the other hand, the shoot number increased with rising BAP concentration. There was a reduction of the maximum fluorescence (F
m
) and maximum quantum yield (φP
0
) as a function of concentration of cytokinins. The most pronounced decrease was observed in the microshoots grown with KIN. The increase in concentration of cytokinins induced greater absorption flux (ABS/RC), trapping flux (TR
0
/RC) and dissipation flux (DI
0
/RC) of energy per reaction center. The stomatal functionality declined with rising cytokinin concentration. The use of KIN is not recommended for in vitro multiplication of this species. The use of BAP at low concentrations assures a multiplication rate with lower degree of disorders in the photosynthetic apparatus of the formed microshoots. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0167-6857 1573-5044 |
DOI: | 10.1007/s11240-018-1385-x |