Interaction effects of oxytetracycline and copper at different ratios on marine microalgae Isochrysis galbana

Contamination with both oxytetracycline (OTC) and Cu is prevalent in water. OTC can chelate with Cu to form OTC + Cu composites. Through the study of the effects of the interaction of OTC and Cu on the algae Isochrysis galbana at multiple coordination ratios, it was found that the OTC + Cu complex w...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 225; pp. 775 - 784
Main Authors Wu, Changlu, He, Chiquan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Contamination with both oxytetracycline (OTC) and Cu is prevalent in water. OTC can chelate with Cu to form OTC + Cu composites. Through the study of the effects of the interaction of OTC and Cu on the algae Isochrysis galbana at multiple coordination ratios, it was found that the OTC + Cu complex was antagonistic to algae growth after 24 h of exposure but was synergistic in treatment (T) 3 and T4 after 48 and 72 h. Compared with OTC alone, the addition of Cu addition significantly inhibited the biosynthesis of chlorophyll a, but the ratio (R) in the OTC + Cu and OTC treatments gradually increased from T1 to T4. The addition of Cu also led to a significant increase in malondialdehyde and reactive oxygen species, but R gradually decreased and increased, respectively, from T1 to T4. The accumulation of OTC in algae was considerably promoted by the addition of Cu, with R increasing 1.5 in T2 to 2.6 in T4; moreover, the residue of OTC in water was reduced in the presence of algae. OTC alone dramatically inhibited the absorption of Cu by algae, while in the presence of OTC + Cu, only the two high-OTC treatments showed a significant decrease in Cu absorption. In addition, the absorption of Mg was markedly inhibited in all OTC treatments and the adsorption of K in the high-OTC treatment, but these inhibitory effects were alleviated in the OTC + Cu treatment. These results indicated that the effects of the OTC + Cu complex on algae were different from the effects of OTC and Cu alone. •OTC + Cu complex affected algae growth differently from OTC and Cu alone.•Cu and high-OTC affect the biosynthesis and fluorescence of chlorophyll.•Cu addition promotes the accumulation of OTC in algae.•OTC inhibits the absorption of Cu, Mg and K by algae.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2019.03.067