HCLL and HCPB coolant purification system: Design of the copper oxide bed

The coolant purification system (CPS) together with the tritium extraction system (TES) and helium cooling system (HCS) are the principal auxiliary circuits of helium-cooled-lithiium–lead (HCLL) and helium-cooled-pebble-bed (HCPB) test blanket modules (TBMs). To extract heat from TBMs, Helium is use...

Full description

Saved in:
Bibliographic Details
Published inFusion engineering and design Vol. 86; no. 9; pp. 1859 - 1862
Main Authors Liger, K., Lefebvre, X., Ciampichetti, A., Aiello, A., Ricapito, I.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The coolant purification system (CPS) together with the tritium extraction system (TES) and helium cooling system (HCS) are the principal auxiliary circuits of helium-cooled-lithiium–lead (HCLL) and helium-cooled-pebble-bed (HCPB) test blanket modules (TBMs). To extract heat from TBMs, Helium is used as primary coolant. CPS is used to extract tritium from the helium primary circuit as well as to guarantee removal of impurities which could interact with structural material. The reference process proposed for CPS is composed of 3 main successive steps. Step 1 consists in oxidation of Q 2 and CO to Q 2O and CO 2 using a copper oxide bed ( Q represents either: H, D or T). Step 2 is dedicated to the removal of water which is adsorbed together with CO 2 on molecular sieve bed. Step 3 will remove residual impurities using a heated getter. Based on the operating conditions of CPS (pressure, flowrate, temperature) and on an estimation of the impurities foreseen, this paper presents a design of the oxidising bed which fulfils all requirements in terms of efficiency and lifespan. The design is obtained using a phenomenological approach taking into account competition between oxidation of CO and Q 2 on the metal oxide. The model was implemented in matlab software. A column of 0.41 m large and 2 m long containing 480 kg of CuO is proposed to assure complete oxidation of Q 2 for 16 months long.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0920-3796
1873-7196
DOI:10.1016/j.fusengdes.2011.03.002