Adsorptive removal of Sr(II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel
In this study, a new adsorbent, polyvinyl alcohol (PVA) and graphene oxide (GO), was prepared, characterized and used for the removal of Sr2+ from aqueous solution. In PVA/GO composite, the inter-lamellar spacing of adjacent GO layers was dramatically enlarged due to the intercalation of PVA molecul...
Saved in:
Published in | Chemosphere (Oxford) Vol. 278; p. 130492 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, a new adsorbent, polyvinyl alcohol (PVA) and graphene oxide (GO), was prepared, characterized and used for the removal of Sr2+ from aqueous solution. In PVA/GO composite, the inter-lamellar spacing of adjacent GO layers was dramatically enlarged due to the intercalation of PVA molecules, such a unique architecture significantly mitigated the aggregation of GO layers, which facilitated the accessible exposure of active sites and the mass transfer of strontium ions (Sr2+), thus enhancing the adsorption capacity toward Sr2+. The adsorption of Sr2+ by PVA/GO composite conformed to the pseudo second-order kinetic model (R2 = 0.9994), the Langmuir model (R2 = 0.9042), and the Freundlich model (R2 = 0.9598). The complexation interaction between Sr2+ and oxygen atoms/π-electron domain of PVA/GO composite was primarily responsible for the adsorption mechanism, based on the characterization results of X-ray photoelectron spectroscopy (XPS), scanning electron microscope equipped with energy dispersion spectroscopy (SEM-EDS) and powder X-ray diffraction (PXRD).
•PVA/GO aerogel was prepared, characterized and used for Sr(II) sorption.•Hydrogen bond was primary driving force in the fabrication of PVA/GO aerogel.•PVA/GO aerogel exhibited good adsorption performance for Sr(II).•PVA/GO aerogel with a monolith morphology can be readily separated from solution.•The interaction between Sr(II) and –COOH/π-electron was responsible of Sr sorption. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2021.130492 |