Response of hormone in rice seedlings to irrigation contaminated with cyanobacterial extract containing microcystins
Microcystins released by cyanobacteria affect crop growth and productivity, and even food safety. Plant hormones play a vital role in regulating growth, development and stress response in plants. Therefore, we studied the response of hormones including abscisic acid (ABA), indole-3-acetic acid (IAA)...
Saved in:
Published in | Chemosphere (Oxford) Vol. 256; p. 127157 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Microcystins released by cyanobacteria affect crop growth and productivity, and even food safety. Plant hormones play a vital role in regulating growth, development and stress response in plants. Therefore, we studied the response of hormones including abscisic acid (ABA), indole-3-acetic acid (IAA), Zeatin (ZT) and gibberellin (GA3) as well as hormone balances (IAA/ABA, ZT/ABA and GA/ABA) to cyanobacterial extract containing microcystins (1, 10, 100 and 1000 μg/L) during stress and recovery periods. Low concentration microcystins (1 μg/L) promoted growth of rice seedlings by increasing levels of IAA, ZT and GA3 and maintaining hormone balances. In addition, the up-regulation of OsYUCCA1 increased IAA level in rice roots by promoting IAA biosynthesis. High concentrations microcystins (10, 100 or1000 μg/L) inhibited growth of rice seedlings by reducing levels of IAA, ZT and GA3 and ratios of IAA/ABA, ZT/ABA and GA/ABA due to increased ABA level. The increase in ABA in rice seedlings induced by high concentrations MCs was resulted from up-regulation of OsNCED1, OsNCED3, OsNCED4 and OsZEP to enhance ABA biosynthesis, and was controlled by up-regulating expression levels of OsABAox1-3 for enhancing ABA catabolism as negative feedback. The highest concentration of MCs (1000 μg/L) caused irreversible damage to metabolisms of IAA and ABA, partly resulting in unrecoverable inhibition on rice growth. All results demonstrate that “low-concentration promotion and high-concentration inhibition” of microcystins was associated with changes in hormone levels and balances by affecting their metabolisms, and could be helpful for guiding agricultural irrigation with microcystin contaminated water.
•Hormone levels and balances were associated with rice adaptation to MCs.•Low MCs promoted rice growth by increasing IAA, ZT and GA3 levels in rice roots.•High MCs disturbed hormone balances by reducing IAA, ZT and GA3 and increasing ABA.•Too high MCs caused irreversible damage to metabolisms of ABA and IAA in rice.•Up-expression of genes involved in ABA metabolism may enhance plant tolerance to MCs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2020.127157 |