Current State of Text Sentiment Analysis from Opinion to Emotion Mining

Sentiment analysis from text consists of extracting information about opinions, sentiments, and even emotions conveyed by writers towards topics of interest. It is often equated to opinion mining, but it should also encompass emotion mining. Opinion mining involves the use of natural language proces...

Full description

Saved in:
Bibliographic Details
Published inACM computing surveys Vol. 50; no. 2; pp. 1 - 33
Main Authors Yadollahi, Ali, Shahraki, Ameneh Gholipour, Zaiane, Osmar R.
Format Journal Article
LanguageEnglish
Published Baltimore Association for Computing Machinery 31.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sentiment analysis from text consists of extracting information about opinions, sentiments, and even emotions conveyed by writers towards topics of interest. It is often equated to opinion mining, but it should also encompass emotion mining. Opinion mining involves the use of natural language processing and machine learning to determine the attitude of a writer towards a subject. Emotion mining is also using similar technologies but is concerned with detecting and classifying writers emotions toward events or topics. Textual emotion-mining methods have various applications, including gaining information about customer satisfaction, helping in selecting teaching materials in e-learning, recommending products based on users emotions, and even predicting mental-health disorders. In surveys on sentiment analysis, which are often old or incomplete, the strong link between opinion mining and emotion mining is understated. This motivates the need for a different and new perspective on the literature on sentiment analysis, with a focus on emotion mining. We present the state-of-the-art methods and propose the following contributions: (1) a taxonomy of sentiment analysis; (2) a survey on polarity classification methods and resources, especially those related to emotion mining; (3) a complete survey on emotion theories and emotion-mining research; and (4) some useful resources, including lexicons and datasets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0360-0300
1557-7341
DOI:10.1145/3057270