Existence of solution for stochastic differential equations driven by G-Lévy process with discontinuous coefficients

The existence theory for the vector-valued stochastic differential equations driven by G -Brownian motion and pure jump G -Lévy process ( G -SDEs) of the type d Y t = f ( t , Y t ) d t + g j , k ( t , Y t ) d 〈 B j , B k 〉 t + σ i ( t , Y t ) d B t i + ∫ R 0 d K ( t , Y t , z ) L ( d t , d z ) , t ∈...

Full description

Saved in:
Bibliographic Details
Published inAdvances in difference equations Vol. 2017; no. 1; pp. 1 - 13
Main Authors Wang, Bingjun, Yuan, Mingxia
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 30.06.2017
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The existence theory for the vector-valued stochastic differential equations driven by G -Brownian motion and pure jump G -Lévy process ( G -SDEs) of the type d Y t = f ( t , Y t ) d t + g j , k ( t , Y t ) d 〈 B j , B k 〉 t + σ i ( t , Y t ) d B t i + ∫ R 0 d K ( t , Y t , z ) L ( d t , d z ) , t ∈ [ 0 , T ] , with first two and last discontinuous coefficients, is established. It is shown that the G -SDEs have more than one solution if the coefficients f , g , K are discontinuous functions. The upper and lower solution method is used.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-017-1242-y