Non-LTE Model Atmosphere Analysis of the Large Magellanic Cloud Supersoft X-Ray Source CAL 83

We present a non-LTE (NLTE) model atmosphere analysis of Chandra High Resolution Camera (HRC-S) and Low Energy Transmission Grating (LETG) and XMM-Newton Reflection Grating Spectrometer (RGS) spectroscopy of the prototypical supersoft source CAL 83 in the Large Magellanic Cloud. Taken with a 16 mont...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 619; no. 1; pp. 517 - 526
Main Authors Lanz, Thierry, Telis, Gisela A, Audard, Marc, Paerels, Frits, Rasmussen, Andrew P, Hubeny, Ivan
Format Journal Article
LanguageEnglish
Published Chicago, IL IOP Publishing 20.01.2005
University of Chicago Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a non-LTE (NLTE) model atmosphere analysis of Chandra High Resolution Camera (HRC-S) and Low Energy Transmission Grating (LETG) and XMM-Newton Reflection Grating Spectrometer (RGS) spectroscopy of the prototypical supersoft source CAL 83 in the Large Magellanic Cloud. Taken with a 16 month interval, the Chandra and XMM-Newton spectra are very similar. They reveal a very rich absorption-line spectrum from the hot white dwarf photosphere but no spectral signatures of a wind. We also report a third X-ray off-state during a later Chandra observation, demonstrating the recurrent nature of CAL 83. Moreover, we found evidence of short-timescale variability in the soft X-ray spectrum. We completed the analysis of the LETG and RGS spectra of CAL 83 with new NLTE line-blanketed model atmospheres that explicitly include 74 ions of the 11 most abundant species. We successfully matched the Chandra and XMM-Newton spectra assuming a model composition with LMC metallicity. We derived the basic stellar parameters of the hot white dwarf, but the current state of atomic data in the soft X-ray domain precludes a detailed chemical analysis. We have obtained the first direct spectroscopic evidence that the white dwarf is massive (M sub(WD) 1 M sub( )). The short timescale of the X-ray off-states is consistent with a high white dwarf mass. Our analysis thus provides direct support for supersoft sources as likely progenitors of Type Ia supernovae (SNe Ia).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0004-637X
1538-4357
DOI:10.1086/426382