MAPK signaling pathway participates in the regulation of intestinal phosphorus and calcium absorption in broiler chickens via 1,25-dihydroxyvitamin D3

Four experiments were performed to investigate the role of the mitogen-activated protein kinase (MAPK) signaling pathway in intestinal absorption of phosphorus (P) and calcium (Ca) in broiler chickens. Experiment 1 assessed how dietary levels of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) influence the g...

Full description

Saved in:
Bibliographic Details
Published inPoultry science Vol. 103; no. 10; p. 104052
Main Authors Han, Jincheng, Lv, Xianliang, He, Lei, Liu, Mengyuan, Qu, Hongxia, Xi, Li, Zhang, Liao, Ma, Bingbing, Shi, Chuanxin, Yang, Guangli, Wang, Zhixiang
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Four experiments were performed to investigate the role of the mitogen-activated protein kinase (MAPK) signaling pathway in intestinal absorption of phosphorus (P) and calcium (Ca) in broiler chickens. Experiment 1 assessed how dietary levels of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) influence the gene expression of intestinal P and Ca transporters in broilers. Experiment 2 evaluated the effects of 1,25(OH)2D3 administered via intraperitoneal injection on the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Experiments 3 and 4 investigated the effect of ERK and p38MAPK inhibitors on the expression of intestinal P and Ca transporters. The findings demonstrated that broilers (1–21 days old) fed a 1,25(OH)2D3-deficient diet (0.625 µg/kg) exhibited reduced body weight, tibia P and Ca levels, and mRNA levels of P transporters (NaPi-IIb, PiT-1, and PiT-2), Ca transporters (NCX1, PMCA1b, and CaBP-D28k), vitamin D receptors (VDR), ERK, and p38MAPK in the duodenum (Experiment 1) (P < 0.05). By comparison, the growth, bone quality, and mRNA levels of genes (except for duodenal NaPi-IIb) in broilers were similar to those in broilers fed the control diet when dietary 1,25(OH)2D3 was adequate (5 µg/kg) (Experiment 1) (P > 0.05). After intraperitoneal injection of 1,25(OH)2D3, the mRNA level of jejunal NaPi-IIb and the protein level of p-p38MAPK/t-p38MAPK in broilers (9–14 days old) decreased (P < 0.05), whereas the mRNA level of CaBP-D28k and the protein level of p-ERK/t-ERK increased (Experiment 2) (P < 0.05). The mRNA and protein expression of jejunal NaPi-IIb and the protein expression of CaBP-D28k in broilers (9–17 days old) treated with the ERK inhibitor PD98059 were greater than those in the control group (Experiment 3) (P < 0.05). Similarly, compared with control broilers, broilers (9–17 days old) treated with the p38MAPK inhibitor SB203580 showed elevated mRNA expression of jejunal NaPi-IIb and CaBP-D28k (Experiment 4) (P < 0.05). These results suggest that adequate supplementation with 1,25(OH)2D3 (5 µg/kg) can restore broiler growth and bone quality by upregulating the transcription of genes involved in intestinal P and Ca absorption. Additionally, the ERK and p38MAPK signaling pathways are implicated in the modulatory effect of 1,25(OH)2D3 on the absorption of P and Ca in broilers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0032-5791
1525-3171
1525-3171
DOI:10.1016/j.psj.2024.104052