Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application

The development of alternative electrode materials with high energy densities and power densities for batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicles. Recently, antimony(Sb)-based intermetallic compounds have attracted considerable...

Full description

Saved in:
Bibliographic Details
Published inRare Metals Vol. 36; no. 5; pp. 321 - 338
Main Authors Luo, Wen, Gaumet, Jean-Jacques, Mai, Li-Qiang
Format Journal Article
LanguageEnglish
Published Beijing Nonferrous Metals Society of China 01.05.2017
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The development of alternative electrode materials with high energy densities and power densities for batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicles. Recently, antimony(Sb)-based intermetallic compounds have attracted considerable research interests as new candidate anode materials for high-performance lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs) due to their high theoretical capacity and suitable operating voltage. However, these intermetallic systems undergo large volume change during charge and discharge processes, which prohibits them from practical application. The rational construction of advanced anode with unique structures has been proved to be an effective approach to enhance its electrochemical performance. This review highlights the recent progress in improving and understanding the electrochemical performances of various Sb-based intermetallic compound anodes. The developments of synthesis and construction of Sb-based intermetallic compounds are systematically summarized. The electrochemical performances of various Sb-based intermetallic compound anodes are compared in its typical applications(LIBs or SIBs).
Bibliography:The development of alternative electrode materials with high energy densities and power densities for batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicles. Recently, antimony(Sb)-based intermetallic compounds have attracted considerable research interests as new candidate anode materials for high-performance lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs) due to their high theoretical capacity and suitable operating voltage. However, these intermetallic systems undergo large volume change during charge and discharge processes, which prohibits them from practical application. The rational construction of advanced anode with unique structures has been proved to be an effective approach to enhance its electrochemical performance. This review highlights the recent progress in improving and understanding the electrochemical performances of various Sb-based intermetallic compound anodes. The developments of synthesis and construction of Sb-based intermetallic compounds are systematically summarized. The electrochemical performances of various Sb-based intermetallic compound anodes are compared in its typical applications(LIBs or SIBs).
Antimony Intermetallic compound Alloy Anode Sodium-ion battery Lithium-ion battery
11-2112/TF
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1001-0521
1867-7185
1743-1336
DOI:10.1007/s12598-017-0899-4