Robust optimization of dense gas flows under uncertain operating conditions

A robust optimization procedure based on a multi-objective genetic algorithm (MOGA) is used to generate airfoil profiles for transonic inviscid flows of dense gases, subject to uncertainties in the upstream thermodynamic conditions. The effect of the random variations on system response is evaluated...

Full description

Saved in:
Bibliographic Details
Published inComputers & fluids Vol. 39; no. 10; pp. 1893 - 1908
Main Authors Cinnella, P., Hercus, S.J.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A robust optimization procedure based on a multi-objective genetic algorithm (MOGA) is used to generate airfoil profiles for transonic inviscid flows of dense gases, subject to uncertainties in the upstream thermodynamic conditions. The effect of the random variations on system response is evaluated using a non-intrusive polynomial chaos (PC) based method known as the probabilistic collocation method (PCM). After initial PCM simulations which showed that the dense gas system was highly sensitive to input parameter variation, a multi-objective genetic algorithm coupled to the PCM produced a Pareto front of optimized individual geometries which exhibited improvements in mean performance and/or stability over the baseline NACA0012 airfoil. This type of analysis is essential in improving the feasibility of organic Rankine cycle (ORC) turbines, which are typically designed to recover energy from variable sources such as waste heat from industrial processes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0045-7930
1879-0747
DOI:10.1016/j.compfluid.2010.06.020