A finite-element method model for droplets moving down a hydrophobic surface

We set up a 2D computational Finite-Element Method (FEM) model describing the initial descent of a droplet down an inclined hydrophobic substrate. We solve the full Navier-Stokes equations inside the drop domain, and use the arbitrary Lagrangian-Eulerian method to keep track of the droplet surface....

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. E, Soft matter and biological physics Vol. 37; no. 7; p. 21
Main Authors Wind-Willassen, Øistein, Sørensen, Mads Peter
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2014
EDP Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We set up a 2D computational Finite-Element Method (FEM) model describing the initial descent of a droplet down an inclined hydrophobic substrate. We solve the full Navier-Stokes equations inside the drop domain, and use the arbitrary Lagrangian-Eulerian method to keep track of the droplet surface. The contact angle is included by using the Frennet-Serret equations. We investigate the behaviour of the drop velocity as a function of the slip length and compare with experimental results. Furthermore, we quantify the energy associated with centre-of-mass translation and internal fluid motion, and we also compute the local dissipation of energy inside the drop. The model predicts trajectories for tracer particles deposited inside the drop, and satisfactorily describes the sliding motion of steadily accelerating droplets. The model can be used for determining a characteristic slip parameter, associated with slip lengths and drag reduction for hydrophobic surfaces. Graphical abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1292-8941
1292-895X
DOI:10.1140/epje/i2014-14065-6