Bi‐Microporous Metal–Organic Frameworks with Cubane [M4(OH)4] (M=Ni, Co) Clusters and Pore‐Space Partition for Electrocatalytic Methanol Oxidation Reaction

Embedding cubane [M4(OH)4] (M=Ni, Co) clusters within the matrix of metal–organic frameworks (MOFs) is a strategy to develop materials with unprecedented synergistic properties. Herein, a new material type based on the pore‐space partition of the cubic primitive minimal‐surface net (MOF‐14‐type) has...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 35; pp. 12185 - 12189
Main Authors Wu, Ya‐Pan, Tian, Jun‐Wu, Liu, Shan, Li, Bo, Zhao, Jun, Ma, Lu‐Fang, Li, Dong‐Sheng, Lan, Ya‐Qian, Bu, Xianhui
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 26.08.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Embedding cubane [M4(OH)4] (M=Ni, Co) clusters within the matrix of metal–organic frameworks (MOFs) is a strategy to develop materials with unprecedented synergistic properties. Herein, a new material type based on the pore‐space partition of the cubic primitive minimal‐surface net (MOF‐14‐type) has been realized. CTGU‐15 made from the [Ni4(OH)4] cluster not only has very high BET surface area (3537 m2 g−1), but also exhibits bi‐microporous features with well‐defined micropores at 0.86 nm and 1.51 nm. Furthermore, CTGU‐15 is stable even under high pH (0.1 m KOH), making it well suited for methanol oxidation in basic medium. The optimal hybrid catalyst KB&CTGU‐15 (1:2) made from ketjen black (KB) and CTGU‐15 exhibits an outstanding performance with a high mass specific peak current of 527 mA mg−1 and excellent peak current density (29.8 mA cm−2) at low potential (0.6 V). The isostructural cobalt structure (CTGU‐16) has also been synthesized, further expanding the application potential of this material type. Split pores: A new 3D microporous metal–organic framework containing cubane [Ni4(OH)4] clusters can serve as an electrocatalyst for the methanol oxidation reaction (MOR). The optimal hybrid material shows impressive electrocatalytic performance including a high mass specific peak current of 527 mA mg−1 and excellent peak current density (29.8 mA cm−2) at a very low potential (0.6 V).
Bibliography:These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201907136