Mitigating the impact of light rail on urban traffic networks using mixed-integer linear programming
As urban traffic congestion is on the increase worldwide, many cities are increasingly looking to inexpensive public transit options such as light rail that operate at street-level and require coordination with conventional traffic networks and signal control. A major concern in light rail installat...
Saved in:
Published in | IET intelligent transport systems Vol. 14; no. 6; pp. 523 - 533 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | As urban traffic congestion is on the increase worldwide, many cities are increasingly looking to inexpensive public transit options such as light rail that operate at street-level and require coordination with conventional traffic networks and signal control. A major concern in light rail installation is whether enough commuters will switch to it to offset the additional constraints it places on traffic signal control and the resulting decrease in conventional vehicle traffic capacity. In this study, the authors study this problem and ways to mitigate it through a novel model of optimised traffic signal control subject to light rail schedule constraints solved in a mixed-integer linear programming (MILP) framework. The authors’ key results show that while this MILP approach provides a novel way to optimise fixed-time control schedules subject to light rail constraints, it also enables a novel optimised adaptive signal control method that virtually nullifies the impact of the light rail presence, reducing average delay times in microsimulations by up to 58.7% versus optimal fixed-time control. |
---|---|
ISSN: | 1751-956X 1751-9578 |
DOI: | 10.1049/iet-its.2019.0277 |