Composite Environments of Severe and Nonsevere High-Shear, Low-CAPE Convective Events

Abstract Severe convection occurring in environments characterized by large amounts of vertical wind shear and limited instability (high-shear, low-CAPE, or “HSLC,” environments) represents a considerable forecasting and nowcasting challenge. Of particular concern, NWS products associated with HSLC...

Full description

Saved in:
Bibliographic Details
Published inWeather and forecasting Vol. 31; no. 6; pp. 1899 - 1927
Main Authors Sherburn, Keith D., Parker, Matthew D., King, Jessica R., Lackmann, Gary M.
Format Journal Article
LanguageEnglish
Published Boston American Meteorological Society 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Severe convection occurring in environments characterized by large amounts of vertical wind shear and limited instability (high-shear, low-CAPE, or “HSLC,” environments) represents a considerable forecasting and nowcasting challenge. Of particular concern, NWS products associated with HSLC convection have low probability of detection and high false alarm rates. Past studies of HSLC convection have examined features associated with single cases; the present work, through composites of numerous cases, illustrates the attributes of “typical” HSLC severe and nonsevere events and identifies features that discriminate between the two. HSLC severe events across the eastern United States typically occur in moist boundary layers within the warm sector or along the cold front of a strong surface cyclone, while those in the western United States have drier boundary layers and more typically occur in the vicinity of a surface triple point or in an upslope regime. The mean HSLC severe event is shown to exhibit stronger forcing for ascent at all levels than its nonsevere counterpart. The majority of EF1 or greater HSLC tornadoes are shown to occur in the southeastern United States, so this region is subjected to the most detailed statistical analysis. Beyond the documented forecasting skill of environmental lapse rates and low-level shear vector magnitude, it is shown that a proxy for the release of potential instability further enhances skill when attempting to identify potentially severe HSLC events. This enhancement is likely associated with the local, in situ CAPE generation provided by this mechanism. Modified forecast parameters including this proxy show considerably improved spatial focusing of the forecast severe threat when compared to existing metrics.
ISSN:0882-8156
1520-0434
DOI:10.1175/WAF-D-16-0086.1