Fault-tolerant rate-monotonic first-fit scheduling in hard-real-time systems

Hard-real-time systems require predictable performance despite the occurrence of failures. In this paper, fault tolerance is implemented by using a novel duplication technique where each task scheduled on a processor has either an active backup copy or a passive backup copy scheduled on a different...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 10; no. 9; pp. 934 - 945
Main Authors Bertossi, A.A., Mancini, L.V., Rossini, F.
Format Journal Article
LanguageEnglish
Published IEEE 01.09.1999
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hard-real-time systems require predictable performance despite the occurrence of failures. In this paper, fault tolerance is implemented by using a novel duplication technique where each task scheduled on a processor has either an active backup copy or a passive backup copy scheduled on a different processor. An active copy is always executed, while a passive copy is executed only in the case of a failure. First, the paper considers the ability of the widely-used rate-monotonic scheduling algorithm to meet the deadlines of periodic tasks in the presence of a processor failure. In particular, the completion time test is extended so as to check the schedulability on a single processor of a task set including backup copies. Then, the paper extends the well-known rate-monotonic first-fit assignment algorithm, where all the task copies, included the backup copies, are considered by rate-monotonic priority order and assigned to the first processor in which they fit. The proposed algorithm determines which tasks must use the active duplication and which can use the passive duplication. Passive duplication is preferred whenever possible, so as to overbook each processor with many passive copies whose primary copies are assigned to different processors. Moreover, the space allocated to active copies is reclaimed as soon as a failure is detected. Passive copy overbooking and active copy deallocation allow many passive copies to be scheduled sharing the same time intervals on the same processor, thus reducing the total number of processors needed. Simulation studies reveal a remarkable saving of processors with respect to those needed by the usual active duplication approach in which the schedule of the non-fault-tolerant case is duplicated on two sets of processors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1045-9219
1558-2183
DOI:10.1109/71.798317