Thermal performance of a novel helically coiled oscillating heat pipe (HCOHP) for isothermal adsorption. An experimental study

Helically Coiled Oscillating Heat Pipes (HCOHPs) have been designed and tested under laboratory conditions to investigate their potential to achieve isothermal adsorption when integrated with a cylindrical solid desiccant packed bed system. The HCOHPs fabricated out of copper, are essentially single...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of thermal sciences Vol. 128; pp. 49 - 58
Main Authors Yeboah, S.K., Darkwa, J.
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Helically Coiled Oscillating Heat Pipes (HCOHPs) have been designed and tested under laboratory conditions to investigate their potential to achieve isothermal adsorption when integrated with a cylindrical solid desiccant packed bed system. The HCOHPs fabricated out of copper, are essentially single turn closed loop oscillating heat pipes with their evaporator and condenser sections helically coiled. They were charged with ethanol, methanol and deionized water respectively at approximately 60% volume fill ratio and tested by slotting through their helically coiled evaporators an empty cylindrical copper vessel which allowed hot air to be blown through at various heat loads to ascertain their thermal performances. The results showed there were critical heat fluxes which varied with heat input amount at the evaporator, beyond which dry-out commenced and thermal resistance increased. These heat fluxes were ≤70W for the ethanol HCOHP and ≤105W for both the methanol and deionized water HCOHPs. Performance instabilities owing to liquid phase of the working fluid transitioning in the drying-out stage was observed for the methanol HCOHP beyond 234W. The variation of the effective thermal conductivities at the evaporators were found to influence the thermal contact resistance experienced at the contact interface of integration and the maximum heat input amount at the evaporators. Optimum performance between the HCOHPs was observed with the deionized water type. Overall, the HCOHPs were capable of managing relatively large amounts of heat input due to their helically coiled sections creating comparatively larger evaporator sections holding relatively more working fluid than the conventional serpentine single turn closed loop OHP system of the same volume and fill ratio. Investigations involving the visualization of the internal flow dynamics is recommended for future studies.
ISSN:1290-0729
1778-4166
DOI:10.1016/j.ijthermalsci.2018.02.014