Decrease in snowfall/rainfall ratio in the Tibetan Plateau from 1961 to 2013
On the basis of two gridded datasets of daily precipitation and temperature with a spatial resolution of 0.5°×0.5°, and meteorological station data released by the National Meteorological Information Center (NMIC) during 1961-2013, the spatial and temporal variations of total amount of precipitation...
Saved in:
Published in | Journal of geographical sciences Vol. 26; no. 9; pp. 1277 - 1288 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Science Press
01.09.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | On the basis of two gridded datasets of daily precipitation and temperature with a spatial resolution of 0.5°×0.5°, and meteorological station data released by the National Meteorological Information Center (NMIC) during 1961-2013, the spatial and temporal variations of total amount of precipitation, amount of rainfall, amount of snowfall and snowfall/rainfall ratio (S/R) in the Tibetan Plateau (TP) are analyzed using Sen's slope, the Mann-Kendall mutation test, Inverse Distance Weighting (IDW) and the Morlet wavelet. Total amount of precipitation and amount of rainfall generally show statistically significant increasing trends of 0.6 mm·a^-1 and 1.3 mm·a^-1, respectively, while amount of snowfall and SIR have significant decreasing trends of-0.6 mm·a^-1 and -0.5% a^-1, respectively. In most regions, due to significant increasing trends in total amount of precipitation and amount of rainfall, and significant decreasing trends in amount of snowfall, SIR shows a decreasing trend in the TP. Abrupt changes in total amount of precipitation, amount of rainfall, amount of snowfall and S/R are detected for 2005, 2004, 1996 and 1998, respectively. Total amount of precipitation, amount of rainfall, amount of snowfall and SIR are concentrated in cycles of approximately 5 years, 10 years, 16 years and 20 years, respectively. The trend magnitudes for total amount of precipitation and amount of rainfall all show decreasing-to-increasing trends with elevation, while amount of snowfall and SIR show decreasing trends. |
---|---|
Bibliography: | On the basis of two gridded datasets of daily precipitation and temperature with a spatial resolution of 0.5°×0.5°, and meteorological station data released by the National Meteorological Information Center (NMIC) during 1961-2013, the spatial and temporal variations of total amount of precipitation, amount of rainfall, amount of snowfall and snowfall/rainfall ratio (S/R) in the Tibetan Plateau (TP) are analyzed using Sen's slope, the Mann-Kendall mutation test, Inverse Distance Weighting (IDW) and the Morlet wavelet. Total amount of precipitation and amount of rainfall generally show statistically significant increasing trends of 0.6 mm·a^-1 and 1.3 mm·a^-1, respectively, while amount of snowfall and SIR have significant decreasing trends of-0.6 mm·a^-1 and -0.5% a^-1, respectively. In most regions, due to significant increasing trends in total amount of precipitation and amount of rainfall, and significant decreasing trends in amount of snowfall, SIR shows a decreasing trend in the TP. Abrupt changes in total amount of precipitation, amount of rainfall, amount of snowfall and S/R are detected for 2005, 2004, 1996 and 1998, respectively. Total amount of precipitation, amount of rainfall, amount of snowfall and SIR are concentrated in cycles of approximately 5 years, 10 years, 16 years and 20 years, respectively. The trend magnitudes for total amount of precipitation and amount of rainfall all show decreasing-to-increasing trends with elevation, while amount of snowfall and SIR show decreasing trends. Tibetan Plateau; gridded data; snowfall/rainfaU ratio; precipitation 11-4546/P ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1009-637X 1861-9568 |
DOI: | 10.1007/s11442-016-1326-8 |