goFOODTM: An Artificial Intelligence System for Dietary Assessment
Accurate estimation of nutritional information may lead to healthier diets and better clinical outcomes. We propose a dietary assessment system based on artificial intelligence (AI), named goFOODTM. The system can estimate the calorie and macronutrient content of a meal, on the sole basis of food im...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 15; p. 4283 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
31.07.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Accurate estimation of nutritional information may lead to healthier diets and better clinical outcomes. We propose a dietary assessment system based on artificial intelligence (AI), named goFOODTM. The system can estimate the calorie and macronutrient content of a meal, on the sole basis of food images captured by a smartphone. goFOODTM requires an input of two meal images or a short video. For conventional single-camera smartphones, the images must be captured from two different viewing angles; smartphones equipped with two rear cameras require only a single press of the shutter button. The deep neural networks are used to process the two images and implements food detection, segmentation and recognition, while a 3D reconstruction algorithm estimates the food’s volume. Each meal’s calorie and macronutrient content is calculated from the food category, volume and the nutrient database. goFOODTM supports 319 fine-grained food categories, and has been validated on two multimedia databases that contain non-standardized and fast food meals. The experimental results demonstrate that goFOODTM performed better than experienced dietitians on the non-standardized meal database, and was comparable to them on the fast food database. goFOODTM provides a simple and efficient solution to the end-user for dietary assessment. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s20154283 |